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Abstract

In this paper we prove the equality between the variational and
semigroupal solutions of a class of Hamilton-Jacobi equations which
were introduced and studied in [7].

Mathematics Subject Classification 2000: 35F25, 90D45, 49C20.
Key words: Hamilton-Jacobi equations, dynamic programming prin-
ciple, semigroups of operators, Chernoff formula.

1 Introduction

In the paper [7] we have introduced and studied the variational and semi-
groupal solutions for the following Hamilton-Jacobi equation with man-min
Hamiltonians

1) U(t,x) — F(z,Up(t,2)) — (Az, Uy(t,z)) = g(x), (t,x) € RT x H
) = eofa). ved,

where H is a Hilbert space with the norm |- | and scalar product (-,-). The
unknown function U is real valued and defined on [0;+00) x H, g, g are

*The authors acknowledge support from the Romanian Ministry of Education and
Research through CEEX program Contract CERES-2-Cex06-11-56/25.07.2006.



given functions on H and Uy, U, stand for the derivatives with respect to
variables t and z of the function U, respectively.

In the following we assume that A is the infinitesimal generator of a
Co—semigroup on H which satisfies ||e|| < M and F is given by

(1.2) F(z,p) = minmax{(f(y,2),p) + h(z,y,2)},
zeZ yey
where Y, Z are two compact sets of a topological space Qand f: Y xZ — H,
h:HXY xZ — R, g: H— R are bounded and uniformly continuous func-
tions with bound constants My, My, M), and, moduli of uniform continuity
Wf, Wy, wp, respectively.
We also assume that the max-min condition is fulfilled, i.e.

Qgﬁgﬂﬂ%@4ﬁ+M%%d}

(1.3)

= maxmin{(f(y, 2),p) + h(x,y, z)} for every x,p € H.
yeY zeZ

Given a Banach space (X, ||-]|) denote by BUC(X) the space of bounded
uniformly continuous real valued functions on X endowed with the norm

1f1ls = sup{[f(z); = € X}.

By Lip(X) we denote the space of all Lipschitz functions f : X — R.

It is well known that Eq. (1.1) is related to certain differential game
[7,9]. The value of this differential game can be viewed as the generalized
solution of Eq. (1.1).

Now we shall present the differential game. Consider the following sets

M(t) ={y: [t,+0o0) — Y; y measurable},

(1.4)
N(t)={z:[t,+0o0) — Z; z measurable}.

M(t) and N(t) will be named sets of controls employed by players I and 11,
respectively.
Fix t > 0,2 € H and consider the differential equation

{ i(s) = Aw(s) + F(y(s), 2(5)), s > 1,

1.5
(15) x(t) = x,

where A and f satisfy the conditions from the previous section and y € M (t),
z € N(t).



Following now [6, 8] we define the strategies of the player I (beginning
at time t) as any mapping

a: N(t) — M(t)
such that for each ¢ < s and z,2 € N(t) we have
2(r)=2(1) ae. t<717<s

implies
alz](t) = alZ](1) ae. t <71 <s.

Similarly, any mapping
B:M(t) — N(t)

with the property that for each t < s and y,y € M (t) satistying y(7) = 4(7)
a.e. t <7 < s we have

Blyl(r) = Bll(r) ae t <7 <s,

is named a strategy of player II (beginning at time t).

We denote by I'(¢) and A(t) the sets of all strategies beginning at time
t for the player I and player II, respectively.

We associate with Eq. (2.2) the payoff functional

(Py) P = [ % N ha(s), y(s), 2(s))ds,

where h satisfies the conditions from Section 1, y € M (t),z € N(t), x(t) is
the “mild” solution of Eq. (2.2), and A is a positive parameter.

The goal of player I is to maximize P, and the goal of player II is to
minimize Pjy.

Using [7, Proposition 2.2, Lemma 2.1] (see also [1,2]) we define for every
y€ BUC(H) and A >0

+oo
(R(N)g)(x) = sup inf {/0 6As[g(x(S))Jrh(w(S),a[Z](S),z(S))]dS}

EFO ZGNO
(1.6) “

— inf sup { / +°2—A8[g(m<s>>+h<x<s>,y(sm[y](s))]ds},

BEAg yEMy

where z(+) from (1.6) is the solution of (1.5), where y(-) and z(-) are substi-
tuted by turn by «[z](-) and B[y](-), respectively.



Let A : D(A) C BUC(H) — BUC(H) be the operator defined by
(see [1])

(1.7) AR(1)g = R(1)g — g for each g € BUC(H)
with the domain
D(A) = {¢ = R(l)g; g € BUC(H)}.

Using now the Crandall-Ligget theorem (see [7]) we obtain that for each

o € D(A) and g € BUC(H) the Cauchy problem

d
£€A<p+ginR+

(1.8) dt
©(0) = o
has a unique weak solution ¢ : Rt — BUC/(H) defined by the exponential
formula
t N\ [t
t)= i I—— — :
plt) = lm < nA) <n9 * @0)

The map

T(t) : D(A) — D(A)
defined by

T(t)po = p(t), t >0

(where ¢(-) is given by (1.8)) is a continuous semigroup of nonlinear con-
tractions on D(A) and it is called the semigroupal solution of Eq. (1.1).
Let us define the function

(S(t)o) () = o(t, )

= sup inf {/Ot[g(w(é‘)) + h(x(s), al2](s), 2(s))]ds + 900(1’(15))}

a€ely 2€No

(1.9)

where () is the solution of (1.5) for y(-) = a[z](-).
By Proposition 3.2 ([7]), S(¢) is a semigroup of contractions on BUC(H)
and it is called the variational solution of Eq. (1.1).



2 The main result
The main result is contained in the following theorem:

Theorem 2.1. If h,g € BUC(H) N Lip(H) then

S(t)po =T (t)po for allt >0 and pg € D(A).

Moreover, the operator A is single valued and for all ¢o € D(A)

(1) lm[(S(0)g0)(@) — po(x)] = (Ago)(x) +g(a), fora € H

and the limit in (2.1) is in the strong topology of H.

Proof. First of all we shall prove that S(¢)(D(A)) C D(A). Indeed, let
po € €. Using Dynamic Programming Principle we have for all 0 < s <t

(S(t)po)(2) =sup inf {/08[9(95(7)) + h(x(r), alz](7), z(7))ldr

GFO ZGN()
(2.2) “

+(S(t)po)(z(t — s)); z(-) verifies (1.5) with g(-) = a[z](-)}
Let € > 0. Then there exist a. € 'y, 2z € Ny such that

/Os[g(:vs(f)) + h(xe(r), aelz](7), 22(7)))dr + (S(t — 8)po) (2(s)) — €

S

< (St)po)(z) < / [9(2=(7)) + h(2=(7), aelz](7), 2 (7))ldr

0
+(S(t = 8)po)(2e(s)) + &

Therefore
[ 9t + (o).l ) ()l + (510~ shu) o)
—(S(t)p0) (@=(s)) — & < (S()0)(@) — (SE)0) z-(5))
< [ ot + hae(r). 0 fl(r), 2l

+(S(t = s)po)(2<(s)) — (S()o)(z(s)) + ¢

Using the last relation we obtain

(2.3) [(S()o) (@) — (S(t)eo)(w(s))] < cs +[|S(s)po — wolly +€

b}



for certain positive constant ¢ and s € (0;¢).
Let x(-) be the solution of (1.5) with g(-) = a[2](-). Then we have

(2.4) [(5(t)90)(=(5)) — (S(6)p0) (@)] < cla=(s) —2(s)] < 2Myes, for 5 > 0.
Using the fact that ¢o € £ and the definition of S(t)@g one can easily obtain
(2.5) 15(5) 00 — ol < cs, for 5 > 0,
From (2.3), (2.4) and (2.5) it results
15(t)g0)(x(s)) — (S(t)po) ()] < s for 0 < 5 <t

Therefore S(t)po € E.
Using now Proposition 3.3 ([7]) we obtain the desired result.
Next, we give a nonlinear version of the Chernoff theorem (see [1]).

Proposition 2.1. Let C be a closed convex subset of a Banach space Y
and let Ay be a m—dissipative subset of Y x Y. Let {G(t); t > 0} be a
family of nonexpansive mapping from C' into itself such that

1
(2.6) lim (1 - AG“’;_I) 2= (I - Mo) 'z

for all z € D(Ag) N C and X > 0. Then

t n
lim <G <>> =My fort>0, z € D(Ap) NC,
n—-+00 n
where et is the semigroup generated by Ap.

We shall apply Proposition 2.1 with C = &, G(p) = S(p) and Agp =
Ap + g for ¢ € D(A). In this case the relation (2.6) becomes

S(p) — 1\
(2.7) lim <I — )\<p)> wo = (I — o) (0 + Ag)
AN P
for g € €.
, s 1 S-1\"' o
Using the nonexpansivity of (I — AA)~" and (I — /\T> on & =

D(A) we remark that it is sufficient to prove (2.7) for ¢g € &.
We put

-1
©p = <I— AS([)L_I> w0, ¢ = (I — XA (0o + Ag).

6



With these notations we have

p A
2. = + )
(2.8) ¥p P A‘PO P )\S(p)@ﬂ

Taking into account the definition of S(p) we may write
P
o) = ~snla)+ 5 s int { [laGete)
(2.9) +h(z(t), alz](t), 2(t))]dt + ,(x(p));
x(+) verifies (1.5) with g(-) = a[z]()}

Using the definition of S(p) and the fact that ¢y € £ we get

(2.10) 1S(p)pollLipcery < pPM N gllLipcay + Mll@ollLip(e)
and
(2.11) 1S(p)eolle < p(llglly + ) + [lwollb,

for some positive constants c.
From (2.8), (2.10) and (2.11) it results

(212) H(pﬂ”Llp < MHSDOHLlp +)\MH9HL1p

(2.13) l©olls < llolls + Alllglly + ©)-

Using now Theorem 2.1 ([7]) we obtain

P 1t —
o) = sup inf { ["e gla(e) + XA pu(e(0)
+h(@(t), al2)(1), 2(1))]dt + e Pp(a(p)); ()

solves (1.5) with g(-) = a[z](-)}.

Therefore there exist ozll) eI, z; € Ny such that

onle) = o) < ~Lnta)+ 2 [lgta,t0)

(2.1 (1), plzp) (1), 20 (8]t + (o p>)}

- /0 e go(1) + Ao (w(t)
+h(wp(1); ap[2)(1), 2p(E)]dE — e Pip(, () + 2%,

7



where z,(-) solves (1.5) for o = a,, y = [z](+) and z = z,.
In the same manner we get

@) = o) = ~Lnta) + 2 [lata, o)

(2.15) +M@UW%%MW%#M£+¢Aam%

- /0 "N (@ 1)) + A g (E(0)
FR(En(E), G 2a)(0), Zp (O]t — e P00 (Ey(0)) + 267

for some &, € I'y and z, € Np.
From (2.14) we obtain

pp(x) —p(x) <

P 1 [P 1
(e = [ ol
’ A

2 [ ataoran = [ gt

0
A

_i_i
p+A

/Op h(xp(t), aplzp)(t), z,(t))dt

P, A
e A X O R P SRR )

1 1 -
n(a) = e o) d

p
-1
e iy (p)] + 207 < /0

P
/
0

= 7 g (0)) + 1o 0), plzg) (), 25(0) el

p+ A

_Aflp

—e lolls + 20°

=2y =l + |2
p+)\<Pp Pllb PR

P
</
0

1 1
- t))|dt
(o)~ el

P11 e~ AT

—_— t))|dt
+ [~ S et

p A _Aflt

_ M, + Mp)dt
+/0 P (Mg + My)




!
A el + 207

— €

A

p+A

I Pl1 e
§/ ctdt+/
p+AJo 0

P
/
0

2 op— ol +

2 o=l +

p+A A

Iollodt

A -1
e

31
— e Pl lwolls + 20

A
0+ A
A
= a(p) + mll% — ¢llo-

Analogously, using (2.15) we obtain

A
() — pp(x) < alp) + ml!% — ¢|lp, Yo € H.

['herefore
— |l — ¥ <a(p), p>0.
)\H p”b — ( )’

a(p)

Since = — 0, we get
P p—0
lim [ — @pllp = 0.
p—0
Applying Proposition 2.1 we have

T(t)po = lim (S <t>>n<ﬁ0 = S(t)¢o,

n—-+4oo n

for every g € £ = D(A), t > 0.
Now we shall prove (2.1).
Let € > 0. Then there exists a. € I'g, such that

Q%WM@—%@SAM@W»

+Hh(w2(7), 0c[2](7), 2(7))]dT + po(x2 (1) — ¢o(z) + &,

(2.16)

for every z € Ny and x1(+) solves (1.5) for a = e, y = a2](+) and z(-).
Using now Proposition 2.2 ([7]) and since ¢g € D(A) there exists f €
BUC(H) such that

po(x) = sup inf {/0 [f(2(7)) +h(x(T),a[Z](T)vz(T))]dTJr6t@o(fﬂ(t))}-

CVGF() ZGN()

9



Therefore, there exists z. € I'g such that

(2.17) go(a)> { [ @) nao,alzo) Ze(T))]dTJret%(ﬂ?z(t))} e,

for every a € I'y.
Taking e = ? and using (2.16) and (2.17) it results

(5(t)0)(z) — polx) < /0 gz (r))dr

n /0 (1— e Mh(aa(r), aplze)(r), ze(r)dr

(1 - e polara(t)) /O et fla e (r))dr + 262,

Dividing now the last relation by ¢ and making ¢ — 0 we obtain

Jim S((SO0)(@) - @) < gl@) - £@) + goe).

Similarly we get

tlir& %((S(t)soo)(w) —wo(r)) > g(z) — f(x) + @o(z).

Therefore

lim +((S(t)g0) () — ¢o(x)) = po() — F(z) + 9(x)

t—04 t

= (R(1)f)(x) = f(z) + g9(z) = (AR(1)f))(x)
+9(z) = (Apo)(z) + g(x), for every z € H.
The proof of Theorem 2.1 is finished.

10
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