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1 Introduction

Let O be an open bounded domain of Rd (1 ≤ d ≤ 3) with smooth boundary ∂O. We also consider
the stochastic partial differential equations

(1)

 dX (t)−∆Ψ (X (t)) dt 3 σ (X (t)) dW (t) , in (0, T )×O
Ψ (X (t)) 3 0, on (0, T )× ∂O
X (0) = x, in O

where x is the initial data and Ψ : R→2R is a maximal monotone (possibly multivalued) graph with
polynomial growth and σ (X) is defined by

(2) σ (x)h =
∞∑
k=1

µk (h, ek)xek, ∀ x ∈ H−1 (O) , ∀ h ∈ L2 (O) ,

where (., .) is the scalar product in L2 (O) .
We note that

σ (X) dW =
∞∑
k=1

µkXdβkek, ∀ t ≥ 0,

which is linear in X. Here {ek} is an orthonormal basis in L2 (O) , {µk} is a sequence of positive
numbers and {βk} a sequence of independent standard Brownian motion on a filtered probability
space

(
Ω,F , {Ft}t≥0 ,P

)
.

1



In this work we shall suppose that the sequence {µk} is such that

(3)
∞∑
k=1

µ2
kλ

2
k = C <∞,

where λk are the eigenvalues of the Laplace operator −∆ in O with Dirichlet boundary conditions.
Recall that the operator A : D (A) ⊂ H−1 (O)→ H−1 (O) is defined by Ax = −∆Ψ (x) where

D (A) =
{
x ∈ H−1 (O) ∩ L1 (O) : Ψ (x) ∈ H1

0 (O)
}
.

The Sobolev space H−1 (O) (the dual of H1
0 (O)) is endowed with the norm

|x|H−1(O) = |x|−1 =
∣∣∣(−∆)−1

x
∣∣∣
H1

0 (O)
.

(Here (−∆)−1
x = y is the solution to Dirichlet problem −∆y = x in O, y ∈ H1

0 (O)).

The scalar product in H−1 (O) is given by

〈x, z〉−1 =
∫
O

(−∆)−1
xzdξ, ∀x, z ∈ H1

0 (O) .

We note that since d ≤ 3 we have by Sobolev embedding theorem

|ek|∞ ≤ C |ek|H2(O) ≤ C |∆ek|L2(O) ≤ Cλk

and for some constant c1 > 0

∞∑
k=1

µ2
k |xek|

2
−1 ≤ c1

∞∑
k=1

µ2
kλ

2
k |x|

2
−1 ≤ C1 |x|2−1 , ∀ x ∈ H−1 (O) .

We obtain that σ (x) is a Hilbert Schmidt from L2 (O) to H−1 (O) . Note that since σ is linear we
have that x→ σ (x) is Lipschitz from H−1 (O) to L2

(
L2 (O) , H−1 (O)

)
.

Recall from [9] the following definition:

Definition 1 Let x ∈ H−1 (O) . An H−1 (O) valued continuous Ft − adapted process X = X (t, x)
is called a solution to (1) on [0, T ] if

X ∈ Lp (Ω× (0, T )×O) ∩ L2
(
0, T ;L2

(
Ω, H−1 (O)

))
and there exists η ∈ Lp/m (Ω× (0, T )×O) such that P−a.s.
(4)

〈X (t) , ej〉2 = 〈x, ej〉2+
∫ t

0

∫
O
η (s, ξ) ∆ej (ξ) dξds

+
∞∑
k=1

µk

∫ t

0

〈X (s) ek, ej〉2 dβk (s) , ∀ j ∈ N, t ∈ [0, T ] ,

and
η ∈ Ψ (X) , a.e. in Ω× (0, T )×O.
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Here m is the exponent arising in the assumption (6) and {ek} is the above orthonormal basis in
L2 (O). Taking into account that −∆ek = λek in O we may equivalently write (4) as follows

〈X (t) , ej〉−1 = 〈x, ej〉2−
∫ t

0

∫
O
η (s, ξ) ej (ξ) dξds

+
∞∑
k=1

µk

∫ t

0

〈X (s) ek, ej〉−1 dβk (s) , ∀ j ∈ N, t ∈ [0, T ] .

We know also from [9] that for Ψ a maximal monotone multivalued function from R into 2R such
that 0 ∈ Ψ (0) and

sup {|θ| : θ ∈ Ψ (r)} ≤ C (1 + |r|m) , ∀r ∈ R
under condition (3), for each x ∈ Lp (O) , p ≥ max {2m, 4} there is a unique nonnegative solution
X ∈ L∞ (0, T ;Lp (Ω;Lp (O))) to the equation (1).

In this work we are interested in the continuous dependence of the solution as function of Ψ
for the stochastic porous media equation (1). This problem is relevant in asymptotic analysis and
approximation of stochastic porous media equations.

To this propose we consider a family of maximal monotone graphs {Ψα}α>0 , Ψ and denote
Aα = −∆Ψα (x) , with

D (Aα) =
{
x ∈ H−1 (O) ∩ L1 (O) : Ψα (x) ∈ H1

0 (O)
}
.

Suppose that the following assumptions are satisfied:

H1 There exist some constants m ≥ 1 and C independent of α such that

(5) sup {|θ| : θ ∈ Ψα (r)} ≤ C (1 + |r|m) , ∀ r ∈ R

and

(6) sup {|θ| : θ ∈ Ψ (r)} ≤ C (1 + |r|m) , ∀r ∈ R.

H2 For all α > 0 we have 0 ∈ Ψα (0) and 0 ∈ Ψ (0) .

H3 We have Ψα → Ψ as α→ 0 in the graph sense, i. e.,

(1 + λΨα)−1
x −→ (1 + λΨ)−1

x, ∀λ > 0, ∀x ∈ R

for α→ 0.

The main result is stated and proved in Section 2 and some examples are given in Section 3.

The following notations will be used throughout this paper.
Lp (O) , p ≥ 1, is the usual space of p−integrable functions with norm denoted by |·|p . The scalar

product in L2 (O) and the duality induced by the space L2 (O) will be denoted by 〈., .〉2 .
For p, q ∈ [1,+∞] by LqW (0, T ;Lp (Ω;H)) (H a Hilbert space) we shall denote the space of all q−

integrable processes u : [0, T ]→ Lp (Ω;H) which are adapted to the filtration {Ft}t≥0 .

By CW
(
[0, T ] ;L2 (Ω;H)

)
we shall denote the space of all H−valued adapted processes which are

mean square continuous (see [12], [13]).
This space is endowed with the norm

‖X‖2CW ([0,T ];L2(Ω,F,P;H)) = sup
t∈[0,T ]

E |X (t)|2H .

The main result (Theorem 2 below) amounts to saying that if Ψα → Ψ, for α → 0, then the
solution Xα to (7) is convergent to the solution X to (1) and this may be seen as a Trotter type result
for equation (1) (see e. g. [1], [3], [11] for corresponding deterministic results).

The Theorem 2 below is the main result of this paper.

3



2 The main result

Theorem 2 Assume that H1, H2, H3 and (3) hold. For each α consider the corresponding equations

(7)

 dXα (t)−∆Ψα (Xα (t)) dt 3 σ (Xα (t)) dW (t) , in (0, T )×O
Ψ (X (t)) 3 0, on (0, T )× ∂O
X (0) = x, in O

.

Then for each x ∈ Lp (O) , the corresponding solution Xα to (7) is convergent in

CW
(
[0, T ] ;L2

(
Ω,F ,P;H−1 (O)

))
for α→ 0 to the solution X to (1), i. e.,

lim
α→0

E |Xα (t)−X (t)|2H−1(O) = 0

uniformly on [0, T ] .

Proof. Let Xλ be the solution to approximating equation

(8)
{
dXλ (t)−∆ (Ψλ (Xλ (t)) + λXλ (t)) dt = σ (Xλ (t)) dW (t) , in (0, T )×O
Xλ (0) = x, in O

where Ψλ is the Yosida approximation of Ψ, i. e.,

(9) Ψλ (x) =
1
λ

(x− Jλ (x)) ∈ Ψ
(

(1 + λΨ)−1 (x)
)
, λ > 0, x ∈ R,

and Jλ (x) = (1 + λΨ)−1 (x) . Note that x 7→ Ψλ (x) + λx is strictly monotonically increasing.
Denote {

Aλx = −∆ (Ψλ (x) + λx) ;

D (Aλ) =
{
x ∈ H−1 (O) ∩ L1 (O) : Ψλ (x) + λx ∈ H1

0 (O)
}
.

Consider also Xα
λ the corresponding solution to equation

(10)
{
dXα

λ (t)−∆ (Ψα
λ (Xα

λ (t)) + λXα
λ (t)) dt = σ (Xα

λ (t)) dW (t) , in (0, T )×O
Xα
λ (0) = x, in O

where Ψα
λ is the Yosida approximation of Ψα for each α.

Denote {
Aαλx = −∆ (Ψα

λ (x) + λx) ;

D (Aαλ) =
{
x ∈ H−1 (O) ∩ L1 (O) : Ψα

λ (x) + λx ∈ H1
0 (O)

}
.

We have

E |Xα (t)−X (t)|2−1 ≤ 3
(
E |Xα (t)−Xα

λ (t)|2−1 + E |Xα
λ (t)−Xλ (t)|2−1

+E |Xλ (t)−X (t)|2−1

)
.

By (6) we know from [[9] , (3.14) ] that for λ→ 0 we have

(11) (Xλ −X)→ 0 strongly in L2
(
Ω;C

(
[0, T ] ;H−1 (O)

))
.

We shall prove now that as λ→ 0 we have

(12) (Xα
λ −Xα)→ 0 strongly in L2

(
Ω;C

(
[0, T ] ;H−1 (O)

))
4



uniformly in α > 0.
Consider the section

ηα ∈ Ψα (Xα) , a.e. in Ω× (0, T )×O

which arises in [7].
Using Ito’s formula for equation

d (Xα (t)−Xα
λ (t))−∆ (ηα (t)−Ψα

λ (Xα
λ (t))− λXα

λ (t)) dt = σ (Xα (t)−Xα
λ (t)) dW (t)

with ϕ (t, x) = |x|2−1 e
−εt, we get that

1
2
|Xα (t)−Xα

λ (t)|2−1 e
−εt +

∫ t

0

∫
O

[ηα (s)−Ψα
λ (Xα

λ (s))− λXα
λ (s)] (Xα (s)−Xα

λ (s)) e−εsdξds

≤
∫ t

0

e−εs 〈Xα (s)−Xα
λ (s) , σ (Xα (s)−Xα

λ (s)) dW (s)〉−1

+
(
−1

2
ε

)(∫ t

0

|Xα (s)−Xα
λ (s)|2−1 e

−εsds

)
+ c

∞∑
k=1

µ2
kλ

2
k

∫ t

0

|Xα (s)−Xα
λ (s)|2−1 e

−εsds, P−a.s..

By (9) we have x = λΨα
λ (x) + (1 + λΨα)−1 (x) and this yields

[ηα (s)−Ψα
λ (Xα

λ (s))− λXα
λ (s)] (Xα (s)−Xα

λ (s))

=
(
ηα (s)−Ψα

(
(1 + λΨα)−1

Xλ (s)
))(

Xα (s)− (1 + λΨα)−1
Xα
λ (s)

)
− λ (ηα (s)−Ψα

λ (Xα
λ (s))) Ψα

λ (Xα
λ (s))− λXα

λ (s) (Xα (s)−Xα
λ (s))

≥ λ
(
|Ψα
λ (Xα

λ (s))|2 − ηα (s) Ψα
λ (Xα

λ (s))
)

+ λ
(
|Xα

λ (s)|2 −Xα
λ (s)Xα (s)

)
≥ −λ

4
|ηα (s)|2 − λ

4
|Xα (s)|2 , P−a.s.

using the monotonicity of Ψα and Ψα
λ (x) ∈ Ψα

(
(1 + λΨα)−1 (x)

)
for all x ∈ R.

Hence for ε > 0 large enough we obtain for all λ ∈ (0, 1) and t ∈ [0, T ]

1
2
|Xα (t)−Xα

λ (t)|2−1 e
−εt ≤ λ

4

∫ t

0

∫
O

(
|ηα (s)|2 + |Xα (s)|2

)
dξds(13)

+
∫ t

0

e−εs 〈Xα (s)−Xα
λ (s) , σ (Xα (s)−Xα

λ (s)) dW (s)〉−1 .

We get for ε > 0, for all λ ∈ (0, 1) , and r ∈ [0, T ] that

1
4

E sup
t∈[0,r]

|Xα (s)−Xα
λ (s)|2−1 e

−εt ≤ λ

4
E
∫ r

0

∫
O

(
|ηα (s)|2 + |Xα (s)|2

)
dξds(14)

+ cE
(∫ r

0

|Xα (s)−Xα
λ (s)|2−1 e

−εsds

)
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since by the Burkholder-Davis-Gundy inequality, we have∫ t

0

e−εs 〈Xα (s)−Xα
λ (s) , σ (Xα (s)−Xα

λ (s)) dW (s)〉−1

≤ E
(
c

∫ r

0

|Xα (s)−Xα
λ (s)|4−1 e

−2εsds

) 1
2

≤ E sup
s∈[0,r]

|Xα (s)−Xα
λ (s)|−1 e

−εs/2
(
c

∫ r

0

|Xα (s)−Xα
λ (s)|2−1 e

−εsds

)1/2

≤ 1
4

E sup
s∈[0,r]

|Xα (s)−Xα
λ (s)|2−1 e

−εs + cE
(∫ r

0

|Xα (s)−Xα
λ (s)|2−1 e

−εsds

)
.

By the hypothesis H1 we have for all x ∈ R and all ηα ∈ Ψα (x)

|ηα| ≤ C (1 + |x|m) .

Consequently for ηα ∈ Ψα (Xα) , a.e. in Ω× (0, T )×O we get that

λ

4
E
∫ t

0

∫
O

(
|ηα (s)|2 + |Xα (s)|2

)
dξds ≤ λ

4
CE

∫ t

0

∫
O

(
|(1 + |Xα (s)|m)|2 + |Xα (s)|2

)
dξds(15)

≤ λ

4
C

(
1 + E

∫ t

0

∫
O
|Xα (s)|p dξds

)
since p ≥ max {2m, 2} and C is independent of λ and α.

We prove that

(16) ess sup
t∈[0,T ]

E |Xα
λ (t, x)|pp ≤ exp

(
c
p− 1

2

)
|x|pp ∀ λ > 0, α > 0,

where c > 0 is independent of t, x, λ and α.
Note that relation (16) is similar to Lemma 3.1 from [9], but in the present paper we are interested

to get c independent of α.
Indeed, for Aαλx = −∆ (Ψα

λ (x) + λx), we take (Aαλ)ε the Yosida approximation of Aαλ ,

(Aαλ)ε =
1
ε

(
I − (I + εAαλ)−1

)
, ε > 0

and we apply the Ito formula to

(17) d (Xα
λ )ε (t) + (Aαλ)ε (Xα

λ )ε (t) dt = σ ((Xα
λ )ε (t)) dW (t)

for the function ϕ (x) = 1
p |x|

p
p. (More precisely we first apply Ito’s formula to (17) for the function

ϕγ (x) = 1
p

∣∣∣(1− γ∆)−1
x
∣∣∣p
p

, γ > 0, and the we let γ → 0. For more details see [[6], Lemma 3.5]).

We get

Eϕ ((Xα
λ )ε (t)) + E

∫ t

0

〈
(Aαλ)ε ((Xα

λ )ε (s)) , |(Xα
λ )ε (s)|p−2 (Xα

λ )ε (s)
〉

2
ds(18)

= ϕ (x) +
p− 1

2

∞∑
k=1

µ2
kE
∫ t

0

∫
O
|(Xα

λ )ε (s)|p−2 |(Xα
λ )ε (s) ek|2 dξds

≤ ϕ (x) +
p− 1

2
cE
∫ t

0

∫
O
|(Xα

λ )ε (s)|p dξds.

6



By [[6], (3.25)] , we have
∣∣(Y αλ )ε

∣∣
p
≤
∣∣(Xα

λ )ε
∣∣
p

and this leads to〈
(Aαλ)ε (Xα

λ )ε , |(X
α
λ )ε|

p−2 (Xα
λ )ε
〉

2
=

1
ε

〈
(Xα

λ )ε − (Y αλ )ε , |(X
α
λ )ε|

p−2 (Xα
λ )ε
〉

2
≥ 0

where (Y αλ )ε = (I + εAαλ)−1 (Xα
λ )ε.

On another hand we have from [[6], Lemma 3.4]

(Xα
λ )ε → Xα

λ strongly in L∞W
(
0, T ;L2

(
Ω;H−1 (O)

))
,

(Xα
λ )ε → Xα

λ weak∗ in L∞W (0, T ;Lp (Ω;Lp (O))) .

Using Gronwall’s lemma in (18) and letting ε tend to 0, we obtain (16) with c > 0 is independent
of t, x, λ and α.

From [[9], (3.8)] we have for λ→ 0

Xα
λ → Xα weak∗ in L∞ (0, T ;Lp (Ω;Lp (O))) .

Using [[10], Proposition III.12.] this yields

ess sup
t∈[0,T ]

E |Xα (t, x)|pp ≤ lim inf
λ

(
ess sup
t∈[0,T ]

E |Xα
λ (t, x)|pp

)

≤ exp
(
c
p− 1

2

)
|x|pp ≤ C1 |x|pp

with C1 > 0 is independent of t, x, λ and α.
Coming back to (15) we get that

λ

4
E
∫ t

0

∫
O

(
|ηα (s)|2 + |Xα (s)|2

)
dξds ≤ λ

4
C

(
1 + E

∫ t

0

∫
O
|Xα (s)|p dξds

)
≤ λ

4
C2

(
1 + ess sup

t∈[0,T ]

E |Xα (t, x)|pp

)

≤ λ

4
C3

(
1 + |x|pp

)
with C3 > 0 is independent of t, x, λ and α.

Using Gronwall’s lemma in (14) we get that

(Xα
λ −Xα)→ 0 strongly in L2

(
Ω;C

(
[0, T ] ;H−1 (O)

))
for λ→ 0 uniformly in α > 0.

In order to complete the proof it suffices to show that

(Xα
λ −Xλ)→ 0 strongly in L2

(
Ω;C

(
[0, T ] ;H−1 (O)

))
, ∀λ > 0.

as α→ 0.
Applying Ito’s formula in equation

d (Xα
λ (t)−Xλ (t))−∆ (Ψα

λ (Xα
λ (t)) + λXα

λ (t)−Ψλ (Xλ (t))− λXλ (t)) dt
= σ (Xα

λ (t)−Xλ (t)) dW (t)

7



with ϕ (t, x) = |x|2−1 e
−εt we have

1
2
|Xα

λ (t)−Xλ (t)|2−1 e
−εt +

∫ t

0

∫
O

[Ψα
λ (Xα

λ (s))−Ψλ (Xλ (s))] (Xα
λ (s)−Xλ (s)) e−εsdξds

+ λ

∫ t

0

∫
O
|Xα

λ (s)−Xλ (s)|2 e−εsdξds

≤
∫ t

0

e−εs 〈Xα
λ (s)−Xλ (s) , σ (Xα

λ (s)−Xλ (s)) dW (s)〉−1

+
(
−1

2
ε

)(∫ t

0

|Xα
λ (s)−Xλ (s)|2−1 e

−εsds

)
+ c

∞∑
k=1

µ2
kλ

2
k

∫ t

0

|Xα
λ (s)−Xλ (s)|2−1 e

−εsds,

and for ε > 0, large enough,we get after some calculation involving the Burkholder-Davis-Gundy
inequality, that

1
4

E sup
t∈[0,r]

|Xα
λ (t)−Xλ (t)|2−1 e

−εt

+ E
∫ r

0

∫
O

[Ψα
λ (Xα

λ (s))−Ψλ (Xλ (s))] (Xα
λ (s)−Xλ (s)) e−εsdξds

≤ cE
(∫ r

0

|Xα
λ (s)−Xλ (s)|2−1 e

−εsds

)
.

It is easily seen that

[Ψα
λ (Xα

λ (s))−Ψλ (Xλ (s))] (Xα
λ (s)−Xλ (s)) ≥ [Ψα

λ (Xλ (s))−Ψλ (Xλ (s))] (Xα
λ (s)−Xλ (s)) ,

P−a.s., since by the monotonicity of Ψλ we have that

(Ψα
λ (Xα

λ (s))−Ψα
λ (Xλ (s))) (Xα

λ (s)−Xλ (s)) ≥ 0.

We obtain that
1
4

E sup
t∈[0,r]

|Xα
λ (t)−Xλ (t)|2−1 e

−εt(19)

≤ cE
∫ r

0

|Xα
λ (s)−Xλ (s)|2−1 e

−εsds(20)

+ E
∫ r

0

∫
O

[Ψα
λ (Xλ (s))−Ψλ (Xλ (s))] (Xλ (s)−Xα

λ (s)) e−εsdξds.

We have also that

E
∫ r

0

∫
O

[Ψα
λ (Xλ (s))−Ψλ (Xλ (s))] (Xλ (s)−Xα

λ (s)) e−εsdξds

=
〈
Ψα
λ (Xλ (s))−Ψλ (Xλ (s)) , (Xλ (s)−Xα

λ (s)) e−εs
〉
L2(Ω×[0,r]×O)

≤ |Ψα
λ (Xλ (s))−Ψλ (Xλ (s))|L2(Ω×[0,r]×O)

∣∣(Xλ (s)−Xα
λ (s)) e−εs

∣∣
L2(Ω×[0,r]×O)

.

Since p > 2 we have that∣∣(Xλ (s)−Xα
λ (s)) e−εs

∣∣
L2(Ω×[0,r]×O)

≤ C |Xλ|Lp(Ω×[0,r]×O) + C |Xα
λ |Lp(Ω×[0,r]×O)

≤ C
(∫ r

0

E |Xλ (s)|pLp(O) ds

)1/p

+ C

(∫ r

0

E |Xα
λ (s)|pLp(O) ds

)1/p

8



and by [[9], Lemma 3.1] and (16) we have∣∣(Xλ (s)−Xα
λ (s)) e−εs

∣∣
L2(Ω×[0,r]×O)

≤ C4

(
1 + |x|pp

)1/p

,

where C4 is independent of x, t, λ and α.
On the other hand by H1 and [[9], Lemma 3.1] we have

|Ψα
λ (Xλ (s))−Ψλ (Xλ (s))|L2(Ω×[0,r]×O)(21)

≤
(

E
∫ t

0

∫
O

(
|Ψα
λ (Xλ (s))|2

)
dξds

)1/2

+
(

E
∫ t

0

∫
O

(
|Ψλ (Xλ (s))|2

)
dξds

)1/2

≤ C5

(
E
∫ t

0

∫
O

(
|1 + |Xλ (s)|m|2

)
dξds

)1/2

≤ C6

(
1 + |x|pp

)1/2

.

with C6 independent of x, t, λ and α.
Using H3, and

(Ψλ (Xλ (s))−Ψα
λ (Xλ (s))) =

1
λ

(
(1 + λΨ)−1

Xλ (s)− (1 + λΨα)−1
Xλ (s)

)
we get

(22) Ψα
λ (Xλ)→ Ψλ (Xλ) as α→ 0, a. e. on Ω× [0, r]×O.

We obtain from (21) and (22) via the Lebesgue dominated convergence theorem that

|Ψα
λ (Xλ (s))−Ψλ (Xλ (s))|L2(Ω×[0,r]×O) → 0 as α→ 0.

Gronwall’s lemma applied to (19) leads to

1
4

E sup
t∈[0,r]

|Xα
λ (t)−Xλ (t)|2−1

≤ |Ψα
λ (Xλ (s))−Ψλ (Xλ (s))|L2(Ω×[0,r]×O)

∣∣(Xλ (s)−Xα
λ (s)) e−εs

∣∣
L2(Ω×[0,r]×O)

and finally we get that

E sup
t∈[0,r]

|Xα
λ (t)−Xλ (t)|2−1 → 0, as α→ 0, ∀λ > 0.

We can now come back to

E |Xα (t)−X (t)|2−1 ≤ 3
(
E |Xα (t)−Xα

λ (t)|2−1 + E |Xα
λ (t)−Xλ (t)|2−1

+E |Xλ (t)−X (t)|2−1

)
.

Given ε > 0 we first choose λ, independent of α, such that the first and the tierd terms are less then
ε

3
. Having fixed λ this way we can choose α such that the second term is less then

ε

3
and finally we

obtain
E |Xα (t)−X (t)|2−1 ≤ ε uniformly on [0, T ] .

The proof of the main result is now complete.
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3 Examples

1◦ Let Ψ : R→2R defined by

Ψα (X) = |X|α signX, 0 ≤ α < 1.

Equation (7) is called in this case the stochastic fast diffusion equation and is relevant in plasma
physics (see [2]).

The case α = 0 is relevant in stochastic models for self-organized criticality. The existence and
longtime behaviors of solutions for equation were studied in [6], [7], [9], [14].

The extinction in finite time of solution for 0 < α < 1 was studied in [8].

As a consequence of Theorem 2 we obtain:

Corollary 3 Consider the solution Xα to equation

(23)

 dXα (t)−∆ (|Xα (t)|α signXα (t)) dt 3 σ (Xα (t)) dW (t) , in (0, T )×O
|Xα (t)|α signXα (t) 3 0, on (0, T )× ∂O
X (0) = x, in O

.

Then for each x ∈ Lp (O) and α→ 0 the corresponding solution Xα to equation (23) is convergent in

CW
(
[0, T ] ;L2

(
Ω,F ,P;H−1 (O)

))
to the solution X to equations

(24)

 dX (t)−∆ (signX (t)) dt 3 σ (X (t)) dW (t) , in (0, T )×O
signX (t) 3 0, on (0, T )× ∂O
X (0) = x, in O

i. e.,
E |Xα (t)−X (t)|2H−1(O) → 0 uniformly on [0, T ] as α→ 0.

Proof.
It is easily seen that Ψ , Ψα : R→2R are maximal monotone graphs.
Since Ψα (X) = |X|α signX = |X|α−1

X and α < 1 ≤ m we have

sup {|θ| : θ ∈ Ψα (X)} = sup {|θ| : θ ∈ |X|α signX}
≤ C (1 + |X|m) , ∀ X ∈ R.

We also have that

(1 + λΨα)−1
x −→ (1 + λΨ)−1

x, ∀λ > 0, ∀x ∈ R

(for details see [1]).
The proof of the Corollary is now complete.

Remark 4 The limit equation (24) is related to the model of self-organized criticality under stochastic
perturbation (see [9]).

2◦ The diffusivity function Ψ : R→2R of stochastic fast diffusion equation can also be written as

Ψα (X) = |X|1−α signX, 0 < α ≤ 1.

10



In case α is near 0, the corresponding equation can be regarded as a perturbation of stochastic
heat equation.

By Theorem 2 we have that for each x ∈ Lp (O) and α→ 0 the solution Xα to equation

(25)


dXα (t)−∆

(
|Xα (t)|1−α signXα (t)

)
dt 3 σ (Xα (t)) dW (t) , in (0, T )×O

|Xα (t)|1−α signXα (t) 3 0, on (0, T )× ∂O
X (0) = x, in O

,

is convergent in CW
(
[0, T ] ;L2

(
Ω,F ,P;H−1 (O)

))
to the solution X to the linear stochastic

heat equations dX (t)−∆X (t) dt = σ (X (t)) dW (t) , in (0, T )×O
X (t) = 0, on (0, T )× ∂O
X (0) = x, in O

,

i. e., E |Xα (t)−X (t)|2H−1(O) → 0 uniformly on [0, T ] as α→ 0.

To conclude the second example, we just have to repeat the proof of the Corollary 3.

3◦ Let Ψ : R→2R be a maximal monotone graph of the form

Ψ (X) =

 Ψ1 (X) , if X < a
[Ψ1 (a) ,Ψ2 (a)] , if X = a
Ψ2 (X) , if X > a

,

where Ψ1 and Ψ2 are continuous and monotone functions satisfying the assumption (6).

We define the approximation

Ψα (X) =


Ψ1 (X) , if X < a− α

Ψ1 (a− α)
a+ α−X

2α
+ Ψ2 (a+ α)

a− α−X
−2α

, if a− α ≤ X ≤ a+ α

Ψ2 (X) , if a+ α < X

.

Note that we have the approximation of a maximal monotone graph by continuous and monotone
functions.

Using Theorem 2 we can prove the following corollary.

Corollary 5 For each x ∈ Lp (O) and α→ 0 the corresponding solution Xα to equation

(26)

 dXα (t)−∆Ψα (Xα (t)) dt = σ (Xα (t)) dW (t) , in (0, T )×O
Ψ (Xα (t)) = 0, on (0, T )× ∂O
X (0) = x, in O

,

is convergent in CW
(
[0, T ] ;L2

(
Ω,F ,P;H−1 (O)

))
to the solution X of equations dX (t)−∆Ψ (X (t)) dt 3 σ (X (t)) dW (t) , in (0, T )×O

Ψ (X (t)) 3 0, on (0, T )× ∂O
X (0) = x, in O

,

i. e., E |Xα (t)−X (t)|2H−1(O) → 0 uniformly on [0, T ] as α→ 0.
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Proof. Since Ψ1 and Ψ2 satisfies assumption (6) of H1 and for all x ∈ R we have lim
α→0

Ψα (x) =

Ψ (x) , the proof of the Corollary 5 is immediate.

As a particular case we have the Heavside step function

H (x) =

 0, if x < 0
[0, 1] , if X = 0
1, if X > 0

,

which is relevant in the anomalous (singular) diffusion equation of the type

dX (t) = ∆ (H (X (t)− xc)) dt+ σ (X (t)) dW (t) ,

with xc the critical value (see [9]).

Another particular case is

Ψ (X) = signX =

{ X
|X| , if X 6= 0

[−1, 1] , if X = 0
,

which as mentioned above is relevant in the stochastic models for self-organized criticality.
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[13] C. Prevot and M. Röckner, A concise course on stochastic partial differential equations, Mono-
grph, Lecture Notes in Mathematics, Springer, 2006.
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