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Abstract

This paper proves the continuous dependence with respect to diffusivity of the solutions to
the stochastic porous media equations with noncoercive monotone diffusivity function and multi-
plicative noise.
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1 Introduction

Let O be an open bounded domain of R? (1 < d < 3) with smooth boundary d0. We also consider
the stochastic partial differential equations

X (t) — ( (t)dt >0 (X (t)dW(t), in (0,T)x0O
(1) (X( ) on (0,T)x 00
X (0)= in O

where z is the initial data and ¥ : R —2® is a maximal monotone (possibly multivalued) graph with
polynomial growth and o (X) is defined by

(2) o(x)h:z;Lk(h,ek)xek, VYV zec H1(O), V heL*(0),

where (.,.) is the scalar product in L? (O).
We note that

o (X)dW = ZukXdﬂkek, vV ot>0,
k=1

which is linear in X. Here {ex} is an orthonormal basis in L? (0), {ux} is a sequence of positive
numbers and {8} a sequence of independent standard Brownian motion on a filtered probability

space (Q,]-", {]—"t}tzo ,IP’) .



In this work we shall suppose that the sequence {u} is such that
(3) > AR = C < oo,
k=1

where \j are the eigenvalues of the Laplace operator —A in O with Dirichlet boundary conditions.
Recall that the operator A : D (A) ¢ H=! (0) — H~'(0) is defined by Az = —AW () where

D(A)={z e H ' (O)NL" (0): ¥ (z) € H) (O)}.
The Sobolev space H~1 (O) (the dual of H} (0)) is endowed with the norm

[2l-10) = ol = | (=) "

H(0)
(Here (—A)™ "z = y is the solution to Dirichlet problem —Ay = z in O, y € H} (0)).
The scalar product in H~! (0) is given by
(z,2)_, = /O (=A)'zzde,  Va,ze HY(O).
We note that since d < 3 we have by Sobolev embedding theorem

lekloo < Cleklpz(0) < ClAek|20) < CAk

and for some constant ¢; > 0
o0 o0
ZM% |$ek|31 <a Z/‘i)‘i |x|271 <G |$‘31 , Y xeH (0).
k=1 k=1

We obtain that o (z) is a Hilbert Schmidt from L? (O) to H~! (O). Note that since o is linear we
have that  — o (z) is Lipschitz from H~! (O) to Ly (L? (0),H~' (0)).
Recall from [9] the following definition:

Definition 1 Let x € H~1(0). An H™' (O) valued continuous F; — adapted process X = X (t,x)
is called a solution to (1) on [0,T] if

X eLP(2x(0,T)x O)NL*(0,T; L (, H* (0)))

and there exists n € LP/™ (Q x (0,T) x O) such that P—a.s.
(4)

(0 e5) = et [ [ o€ A (€ deas
+Zuk/ (X (s)er,ej),dBr(s), VjeN, tel0,T],
k=1 0

and
neV(X), ae in Qx(0,T)x0O.



Here m is the exponent arising in the assumption (6) and {ej} is the above orthonormal basis in
L? (0). Taking into account that —Aey = Aex in O we may equivalently write (4) as follows

(X (1) e5)_, = (0re5), / /O 0 (5,€) 5 (€) déds

oo t
+Zuk/ (X (s)er,e;)_,dBk(s), VjieN, telo,T].
k=1 0

We know also from [9] that for ¥ a maximal monotone multivalued function from R into 2% such
that 0 € ¥ (0) and
sup{l0] : 0 € ¥ (r)} <C(1+|r|™), VreR
under condition (3), for each x € LP (O), p > max{2m,4} there is a unique nonnegative solution
X € L™ (0,T; L? (Q; LP (0))) to the equation (1).

In this work we are interested in the continuous dependence of the solution as function of W
for the stochastic porous media equation (1). This problem is relevant in asymptotic analysis and
approximation of stochastic porous media equations.

To this propose we consider a family of maximal monotone graphs {¥*}
A¥ = —AT* (z), with

D(A%)={z e H ' (O)NL" (0):¥* (z) € H; (0)}.

Suppose that the following assumptions are satisfied:

as>0> ¥ and denote

H; There exist some constants m > 1 and C independent of « such that

(5) sup{|0] : 0 € ¥ ()} <C(1+]r|™), V reR
and
(6) sup{|0|: 0 € ¥ (r)} <C 1+ r|™), vr e R.

H, For all a > 0 we have 0 € ¥ (0) and 0 € ¥ (0).
H3; We have ¥* — ¥ as o — 0 in the graph sense, i. e.,
(14X e — (14+A0) "2, VA>0, VzeR

for a — 0.

The main result is stated and proved in Section 2 and some examples are given in Section 3.

The following notations will be used throughout this paper.

L? (O), p>1,is the usual space of p—integrable functions with norm denoted by || » - The scalar
product in L? (0) and the duality induced by the space L? (O) will be denoted by (.,.), .

For p,q € [1,+00] by L}, (0,T; L? (Q; H)) (H a Hilbert space) we shall denote the space of all g—
integrable processes w : [0,7] — LP (€2; H) which are adapted to the filtration {F;},~ -

By Cw ([0, T); L? (Q; H)) we shall denote the space of all H—valued adapted processes which are
mean square continuous (see [12], [13]).

This space is endowed with the norm

2 2
I XN e 0,122, 7 Bi1y) = tGSE%PT]E RIS

The main result (Theorem 2 below) amounts to saying that if ¥ — ¥, for « — 0, then the
solution X to (7) is convergent to the solution X to (1) and this may be seen as a Trotter type result
for equation (1) (see e. g. [1], [3], [11] for corresponding deterministic results).

The Theorem 2 below is the main result of this paper.



2 The main result

Theorem 2 Assume that Hy, Hs, Hs and (3) hold. For each « consider the corresponding equations

U (X (t)) 20, on (0,T)x 00
X (0) =z, in O

{ dXe (t) — AV (X () dt > 0 (X (t)dW (t), in  (0,T)x O
(7)

Then for each x € LP (O) , the corresponding solution X to (7) is convergent in
Cw ([0,77; L7 (0, F,P; H (0)))
for a — 0 to the solution X to (1), i. e.,

lim B[ X (t) = X (£)[3-1(0) =0

a—0
uniformly on [0,T].
Proof. Let X, be the solution to approximating equation

. { dXA (1) = A (Uy (Xx (8) £ AXx () dt = 0 (Xx () dW (£),  in (0,T) x O
X (0) ==z, in O

where ¥y is the Yosida approximation of VU, i. e.,

) Uy (z) = % (= @) e ¥ (A1) (@), A>0 zeR,

and Jy (z) = (1+ )\\IJ)_I (x). Note that x — U (x) + Az is strictly monotonically increasing.
Denote
Ayz = —A (V) (z) + Ax);
D(A\)={z e H(O)NL' (0): ¥, (z)+ Az € H} (0)}.
Consider also X§ the corresponding solution to equation

AX5 (1) — A (S (XS (1) + AXS () dt = o (X§ (1) dW (1), i (0,T) x O
(10) Yo .
L(0) ==, in O
where ¥¢ is the Yosida approximation of ¥ for each a.
Denote
Agw = A (U3 (2) + M)
D (AS) = {x e H 1(O)NL' (0): U (z) + \z € H} ((9)}
We have

EIX (1) - X (02, <3(EIX° (1) - X3 02, +EIXS () - Xx (O,
+E X5 (1) = X (1))
By (6) we know from [[9] , (3.14) ] that for A — 0 we have
(11) (Xy—X)—0 strongly in L? (Q;C ([O,T] cH! ((’)))) )
We shall prove now that as A — 0 we have

(12) (X5 —X%) — 0 stronglyin L*(Q;C ([0,7]; H ' (0)))



uniformly in o« > 0.
Consider the section

n® € U (XY, ae in Qx(0,T)x0O
which arises in [7].
Using Ito’s formula for equation

d(X* (1) = X3 (1) = A (0™ (8) = WX (XX (1) = AXX (1)) dt = o (X (1) = XY () dW (1)

with ¢ (t,2) = |z, e, we get that

S0 = XTOF e+ [ [ () = W0 (6) = AXS ()] (X () = X () s

< [ e X 6 = XE (5). 0 (X7 () = X () W (),

#(3) ([ e - xg oy enas)

o0 ¢
+ CZ/J%A%/ | X (s) — X§ (s)|2_1 e “*ds, P-a.s..
k=1 0
By (9) we have 2 = AU¢ (z) 4+ (1 +A0) ™" (z) and this yields

(7 () = W5 (X3 () = AXS ()] (X7 (5) = X3 (5))
(n () = o= (1420 7 X0 (5)) ) (X (5) = (14 A8 7 X3 (s))

— A (% () = W5 (X5 () U3 (X5 () = AXS (5) (X° (5) = X3 (5))
= A (105 (X5 () =0 () 05 (X5 () + A (1X5 () = X5 (5) X° ()

2_

A
n* () = 71X (), Pas.

using the monotonicity of ¥* and ¥¢ (z) € ¥ ((1 + Ape) ! (x)) for all x € R.
Hence for € > 0 large enough we obtain for all A € (0,1) and ¢ € [0, T

18) It X5t < [ [ (10 0F +1X (0)F) dsas

[ X ) = XS (9,0 (X (5) = XS )W (5)

We get for € > 0, for all A € (0,1), and r € [0, T] that
1
(14) ZE sup | X% (s) — et < ]E/ / |77 $)[> + X (s)| )dfds

t€(0,r]
+cE </ | X% (s) — X¥ (s)|_1 e“ds)
0



since by the Burkholder-Davis-Gundy inequality, we have

/0 ™% (X (s) = X3 (s), 0 (X (s) = X (5) AW (s)) _,

<e(c [ I -x oL, d)

1/2
<E sup (X)X () ye (o [ 1000 X5 Gy e as)

s€0,r]

1
< XE sup | X% (s) — Xy (s)|271 e =+ cE (/ | X (s) — X¥ (s)|31 e_ssds> .
0

s€[0,r]
By the hypothesis H; we have for all z € R and all n® € ¥ (z)
I < C(1+]z[™).

Consequently for n* € ¥« (X), a.e. in Qx(0,T) x O we get that
@ )\ ! « my 2 « 2
15) JE [ [ (W @F +1x0 0 aeas < 30 [ [ (1013 E +1x () deds
0 Jo

é ¢ aSP S
§4C<1+E/O/O|X (s)] dgd)

since p > max {2m, 2} and C is independent of A and .
We prove that

(16) esssupE | XY (t,x)|) < exp (cp -

1
>m|5 vV A>0, a>0,
t€[0,T)

where ¢ > 0 is independent of ¢, z, A and «.

Note that relation (16) is similar to Lemma 3.1 from [9], but in the present paper we are interested
to get ¢ independent of a.

Indeed, for ASx = —A (¥§ (x) + Ax), we take (AY), the Yosida approximation of A,

1 _
(43). = (17 (I + eAS) 1) L £>0
and we apply the Ito formula to

(17) d(X3). () + (AR (XX). (8) dt = o ((XX), (t) AW (£)
for the function ¢ (z) = 1% |x|§. (More precisely we first apply Ito’s formula to (17) for the function

P
oy (z) = % (1—~A)! x‘ , ¥ > 0, and the we let v — 0. For more details see [[6], Lemma 3.5]).
P
We get

(18) Eg ((X3). (1) +E / ((A9). ((X2). () 1(X3). (P2 (X3)..(5))_ ds
+—Zm/ LI 672 165 () el s

< CIE/ / [(X3). ()" déds.




By [[6], (3.25)] , we have |(Y/\a)€|p < |(X§“)g|p and this leads to

(A9, 068, 10680172 (690, = 2 (080, — (0., 1) (X5), ) 20

2

where (V) = (I +A$) ™1 (X%)..
On another hand we have from [[6], Lemma 3.4]

(XY), — XY strongly in Ly (O,T; L? (Q; H! ((’)))) ,
(X9, — X3 weak™ in Ly (0,T; LP (Q; L* (0))).

€

Using Gronwall’s lemma in (18) and letting € tend to 0, we obtain (16) with ¢ > 0 is independent

of t,x,\ and «.
From [[9], (3.8)] we have for A — 0

X§ — X weak™ in L™ (0,T;LP (Q; LP (0))).
Using [[10], Proposition II1.12.] this yields

esssupE | X< (t, )|} < hm inf (ess supE | X§ (¢, x)|p>

t€[0,T] t€[0,T)
< exp (cp _

1
) elp < Calel

with C; > 0 is independent of ¢, z, A and «.
Coming back to (15) we get that

iE/Ot/O(na<s>2+|X“(s)l2) déds < C(1+E/Ot/oX“<s>|”d5ds)

Cy | 1+ esssupE | X“ (¢, x)|p
te[0,T]

IN
B> > >

IN

C3 (1 + \x|g>

with C3 > 0 is independent of ¢, z, A and «.
Using Gronwall’s lemma in (14) we get that

(X5 —X%) — 0 stronglyin L*(Q;C ([0,T]; H ' (0)))

for A — 0 uniformly in o > 0.
In order to complete the proof it suffices to show that

(X§ — X)) — 0 strongly in  L*(Q;C ([0,T]; H ' (0))), VA>0.

as a — 0.
Applying Ito’s formula in equation

d (X3 (1) = Xx (1) — A (WX (XF (1) +AXT (1) — Wa (X (1) = AXA (1)) di
o (X3 (t) — X (1) dW (t)



et

with ¢ (t,z) = |x\%1 e~ ¢t we have

F RO =X 0P e+ [ ] 35 (9) = 0 (0 ()] (33 () = X () s

0

t Y (s) — s)|? e"e%deds
o [ X3 6) = X0 )P e

< [ R )= 0 90,0 (X5 ) = X ()W 5
# () () e - xa o ereoas) o>t [ 1656 - o e

and for € > 0, large enough,we get after some calculation involving the Burkholder-Davis-Gundy
inequality, that

1
1E sup X5 (8) = Xa (1), e
te(0,r]

+E /0 " /O (WS (X5 (5)) — Wa (X (5)] (X5 (s) — X (s)) e =*déds

< E ( JRESICEE NI d) |

It is easily seen that
(WS (XX (5)) = W (XA ()] (XX (5) = Xx () = [WR (X (5)) = U (X ()] (XX (5) = X (9)),
P—a.s., since by the monotonicity of ¥y we have that

(T (XS (s)) = TR (X (5))) (XX (s) = X (s)) = 0.
We obtain that

1
(19) “E sup |X§ () — X ()2, e
4 te(0,r]
20 < cE X¢(s)— X (s 3 e %%ds
0 A 1

+ E/OT /O (TS (Xx () — Ta (X2 (8))] (Xa (5) — X§ (s)) e~ =Fdéds.
We have also that
/ / [PR(Xa(5) = U (X ()] (Xa (5) — X (s)) e”**dEds

= (TS (Xa (8)) — Ua(Xa(5)), (Xn (s) — X¥ (S))€7€S>L2(Q><[O,r]><(9)
< S (X (5)) = Ua (Xx ()] 2 ax o x 0y | (X (8) = X5 (5)) 6765|L2(Q><[0,r]><(9) :

Since p > 2 we have that

|(Xx (s) — X3 (9))e 7€S|L2(Q><[07]><(9)

< ClXapeaxporxo) T C XX Le@x(orxo)

r 1/p r 1/p
SC</O E|X/\(3)|I£p(o)d3> +C</ ]E|X>\( )Lp(o)d>



and by [[9], Lemma 3.1] and (16) we have

a —€s p p
(X (8) = X5 () € | ooy < Ca (1+12l7)

where C} is independent of z,t, A and a.
On the other hand by Hy and [[9], Lemma 3.1] we have

(21) [US (X2 (5)) = U (X ()] 22 2x [0, x0)

) (E/Ot/o (w55 0F) d5d8>1/2 ' (E/ot/o (19 (X2 (9))P) d§d8>1/2
<o ([ [ (e imor?) )

< Cs (1 + |x|§)1/2.

with Cg independent of z,¢, A and «.
Using H3, and

(14 A2) 7 X (5) = (14202 ™ X (s))

> =

(Wx (X (5)) = S (Xx (s))) =
we get
(22) UG (X)) — Wy (X)) asa— 0, a. e. on Q x [0,7] x O.
We obtain from (21) and (22) via the Lebesgue dominated convergence theorem that
(TS (X () = U (Xn ()| 22(x [0, x0) — 0 as a — 0.

Gronwall’s lemma applied to (19) leads to

1
ZE sup X3 (1) - Xa (1)),
te(0,r]

< |\I’§ (X/\ (5)) -0y (X/\ (8))|L2(Q><[O,r]><@) ’(XX (3) - X? (S)) e_ES‘L2(QX[0$T]X@)
and finally we get that

E sup |X¥(t) — X (t)\il —0,asa—0, VYA>0.
telo,r]

We can now come back to
E[X*(t) - X (1), <3 (E X2 (8) = XS (12, +E XS (1) - Xa (0)]2,
HE X5 () = X (0,) -
Given ¢ > 0 we first choose )\, independent of «, such that the first and the tierd terms are less then

€ €
—. Having fixed A this way we can choose « such that the second term is less then 3 and finally we

obtain
E|X*(#) —X (t)|2_1 < ¢ uniformly on [0,7].

The proof of the main result is now complete. m



3 Examples
1° Let ¥ : R —2F defined by
U (X) =|X|"signX, 0<a<]l.

Equation (7) is called in this case the stochastic fast diffusion equation and is relevant in plasma
physics (see [2]).

The case o = 0 is relevant in stochastic models for self-organized criticality. The existence and
longtime behaviors of solutions for equation were studied in [6], [7], [9], [14].

The extinction in finite time of solution for 0 < o < 1 was studied in [8].

As a consequence of Theorem 2 we obtain:

Corollary 3 Consider the solution X to equation
dX*(t) — A (| X (t)|" sign X (t)) dt 3 o (X (1)) dW (t), in (0,T) xO
(23) | X ()] sign X (t) 0, on (0,T)x 00
X (0) ==, in O
Then for each x € LP (O) and a — 0 the corresponding solution X< to equation (23) is convergent in
to the solution X to equations
dX (t) — A (signX (t))dt > o (X (t)) dW (1), in  (0,T)x0O
(24) signX (t) 30, on (0,T) x 00
X (0) =, in O
E|X“()—X (t)|§{,1(o) — 0 uniformly on [0,T] as a« — 0.

Proof.
It is easily seen that ¥ , ¥ : R —2® are maximal monotone graphs.
Since U™ (X) = | X|* signX = |X|*"' X and o < 1 < m we have

sup {|0] : 0 € ¥~ (X)} =sup{|0] : 0 € | X| signX}
<CA+|X|™), V XeR

We also have that
(14+A0) e — (14 A0) "2, VA>0, VzeR

(for details see [1]).
The proof of the Corollary is now complete. m

Remark 4 The limit equation (24) is related to the model of self-organized criticality under stochastic
perturbation (see [9]).

2° The diffusivity function ¥ : R —2F of stochastic fast diffusion equation can also be written as

T (X) = |X|""“signX, 0<a<l.

10



30

In case « is near 0, the corresponding equation can be regarded as a perturbation of stochastic
heat equation.

By Theorem 2 we have that for each x € L? (O) and o — 0 the solution X® to equation

dX° (1) — A (|X°‘ ()~ sign X (t)) dt 3 o (X (0)dW (1), i (0,T)x O
(25) 31X (6)' " signX () 5 0, on  (0,T) %90 >
X (0) ==, in O

is convergent in Cyy ([O,T] L2 (Q,]—', P: H! ((9))) to the solution X to the linear stochastic
heat equations

X (t) — AX( Ydt = o (X () dW (1), in  (0,7)x0O
(t) on (0,7)%x00 |
X (0)= in O

iLe,E|X(t)— X (t)ﬁ{fl(o) — 0 uniformly on [0,7] as a — 0.

To conclude the second example, we just have to repeat the proof of the Corollary 3.

Let ¥ : R —2® be a maximal monotone graph of the form

U (X)), itX <a
W(X) =4 [ (a) (@), HX=a
\IJQ(X), if X >a

where ¥ and Wy are continuous and monotone functions satisfying the assumption (6).

We define the approximation

Uy (X), if X <a-—a
X —a—X
U (X) = \Ill(a—a)a—i_;ia—i—\lfg(a—i—a)%, ifa—a<X<a+a
Uy (X)), ifa+a<X

Note that we have the approximation of a maximal monotone graph by continuous and monotone
functions.

Using Theorem 2 we can prove the following corollary.

Corollary 5 For each x € LP (O) and o — 0 the corresponding solution X% to equation
dX(t) — AV (X (t))dt = o (X (t))dW (1), in  (0,T)x0O

(26) U(X*(t) =0, on (0,T)x00 ,
X (0) ==, in O

s convergent in Cy, ([O,T] L2 (Q,]—", P;H! ((’)))) to the solution X of equations

X (t) — ( (t)dt > o (X (t)dW (t), in  (0,T)xO
(X( ) on (0,T)x 00 ,
X (0) = m O

i e, E|IX*(t)— X (t)ﬁg_l(o) — 0 uniformly on [0,T] as o — 0.

11



Proof. Since ¥ and ¥, satisfies assumption (6) of H; and for all z € R we have lir%W“ (z) =
U (z), the proof of the Corollary 5 is immediate. m

As a particular case we have the Heavside step function

0, ifx <0
H()={ [0,1], ifXxX=0,
1, if X >0

which is relevant in the anomalous (singular) diffusion equation of the type
dX (t) = AH (X (t) —x.))dt+ 0 (X () dW (),
with z. the critical value (see [9]).
Another particular case is
=T if X#0
U (X) =signX =
-1,1], itX =0

which as mentioned above is relevant in the stochastic models for self-organized criticality.
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