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A NEAR SUBTRACTION RESULT IN METRIC
SPACES

(THE LOCALLY CLOSED GRAPH CASE)

CORNELIU URSESCU

Abstract. The paper concerns a near subtraction result for mul-
tifunctions with locally closed graphs in metric spaces.

1. Introduction

Let X and Y be topological spaces, let F : X → Y be a multifunc-
tion, and recall the multifunction F is said to be open if the set F (U)
is open in Y whenever the set U is open in X. This property can be
analyzed through a pointwise property. The multifunction F is said to
be open at a point (x, y) ∈ graph(F ) if the set F (U) is a neighborhood
of y whenever the set U is a neighborhood of x. Clearly, F is open iff F
is open at each point (x, y) ∈ graph(F ). A weaker version of pointwise
openness can be defined by using set closure. The multifunction F is
said to be nearly open at a point (x, y) ∈ graph(F ) if the set F (U) is
a neighborhood of y whenever the set U is a neighborhood of x. Here,
S stands for the closure of the set S. Pointwise near openness can be
used to synthesize near openness, a weaker version of openness. The
multifunction F said to be nearly open if F is nearly open at each point
(x, y) ∈ graph(F ).

In some cases, openness at a point can be derived from near openness
at that point (see [13, p. 439, Lemma 3] and [20, Theorems 1 and 2],
where the multifunction has a locally closed graph).

In other cases, such pointwise results may fail even if the multifunc-
tion has a closed graph (see the first counterexample in Section 6),
but some special properties of openness can be derived from their near
versions.

In most of these cases, the special property of openness and its near
version imply at least local uniform openness and local uniform near
openness respectively. Let us describe these local notions, which make
sense in uniform spaces.

First, we consider setwise openness and setwise near openness. The
multifunction F is said to be open on a set S ⊆ graph(F ) if F is open

Date: February 28, 2010.
2000 Mathematics Subject Classification. Primary 47H04.
Key words and phrases. multifunction openness and near openness; subtraction

and near subtraction.
1



2 CORNELIU URSESCU

at every point (x, y) ∈ S, whereas the multifunction F is said to be
nearly open on a set S ⊆ graph(F ) if F is nearly open at every point
(x, y) ∈ S.

Further, we note openness and near openness of F at a point (x, y)
can be rephrased by using any base U for the neighborhood system of
x as well as any base V for the neighborhood system of y. Namely, F
is open at (x, y) iff for every U ∈ U there exists V ∈ V such that

V ⊆ F (U),

whereas F is nearly open at (x, y) iff for every U ∈ U there exists
V ∈ V such that

V ⊆ F (U).

Now, let X and Y be uniform spaces, and note F is open at (x, y)
iff for every entourage U on X there exists an entourage V on Y such
that

(1) V [y] ⊆ F (U [x]),

whereas F is nearly open at (x, y) iff for every entourage U on X there
exists an entourage V of y such that

(2) V [y] ⊆ F (U [x]).

Here, E[p] stands for the set of all points p′ such that (p, p′) belongs to
the entourage E.

Further, we consider the uniform versions of setwise openness and
of setwise near openness. The multifunction F is said to be uniformly
open on a set S ⊆ graph(F ) if for every entourage U on X there
exists an entourage V on Y such that for every (x, y) ∈ S there holds
inclusion (1), whereas the multifunction F is said to be uniformly nearly
open on a set S ⊆ graph(F ) if for every entourage U on X there
exists an entourage V on Y such that for every (x.y) ∈ S there holds
inclusion (2).

Clearly, uniform openness on a set implies uniform near openness on
that set. In some general spaces, uniform openness of F on graph(F )
can be derived from uniform near openness of F on graph(F ) (see [9,
p. 202, Lemma 36], where F has a closed graph and the uniformity on
X has a countable base, i.e. the uniform space X is metrizable; see
also [9, p. 214, Note], where a counterexample shows the result may fail
if X is not metrizable). In some particular spaces, uniform openness of
F on a set S ⊆ graph(F ) can be derived from uniform near openness
of F on S (see [18, p. 146, Theorem 6], where X and Y are metric
spaces).

Finally, we consider the local notions of uniform openness and of
uniform near openness. The multifunction F is said to be locally uni-
formly open if there exists an open covering W of graph(F ) such that
F is uniformly open on W ∩ graph(F ) whenever W ∈ W , whereas the
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multifunction F is said to be locally uniformly nearly open if there ex-
ists an open covering W of graph(F ) such that F is uniformly nearly
open on W ∩ graph(F ) whenever W ∈ W .

Clearly, local uniform openness implies local uniform near openness.
In some cases, local uniform openness of F can be derived from local
uniform near openness of F (see [18, p. 145, Theorem 4], where F has
a locally closed graph, and X and Y are metric spaces).

A special property of openness, which implies local uniform openness,
is involved by all of the three theorems in Section 2 below: Theorem 1
(cf. [18, p. 148, Theorem 9]) shows that special property can be derived
from its near version; Theorem 2 (see [19, p. 2219,Theorem 6]) shows
that special property can be derived from a weaker property; Theo-
rem 3, the main result of this paper, shows that special property can
be derived from an even weaker property.

A new proof of Theorem 2 and a proof of Theorem 3 are given in
Section 3. These proofs are based on some directional results presented
in Sections 4 and 5. Counterexamples and some remarks are considered
in Sections 6 and 7 respectively.

2. Main result

In the following, we discuss at some length the two results, The-
orems 1 and 2 below, on which there is grounded our main result,
Theorem 3 stated at the end of this section.

Let X and Y be metric spaces, and note F is open at (x, y) iff for
every ε > 0 there exists δ > 0 such that

B(y, δ) ⊆ F (B(x, ε)),

whereas F is nearly open at (x, y) iff for every ε > 0 there exists δ > 0
such that

B(y, δ) ⊆ F (B(x, ε)).

Here, B(c, r) stands for the open ball of center c and radius r.
Further, let ω > 0 be a real number, and consider the ω-openness

inclusion

(3) B(y, ωε) ⊆ F (B(x, ε))

as well as the near ω-openness inclusion

(4) B(y, ωε) ⊆ F (B(x, ε)).

Theorem 1 below, a corollary of a result in [18, p. 148, Theorem 9],
concludes that a special openness based on inclusion (3) can be derived
from the corresponding near version, based on inclusion (4). To state
this corollary, we have to particularize a construction in [18, p. 148].
For every (x, y) ∈ graph(F ), let ηω(x, y) stand for the supremum of all
ε > 0 which render true the inclusion

(B(x, ε)×B(y, ωε)) ∩ graph(F ) ⊆ graph(F ).
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By convention, sup ∅ = 0. Note (see [19, p. 2216]) the everywhere
nonnegative function ηω : graph(F )→ R∪{+∞} is everywhere infinite
iff F has a closed graph, and everywhere finite iff F does not have a
closed graph, in which case

|ηω(x′, y′)− ηω(x, y)| ≤ max{d(x′, x), d(y′, y)/ω}
for all (x, y) ∈ graph(F ) and for all (x′, y′) ∈ graph(F ). Note also ηω

is everywhere positive iff F has a locally closed graph.
Consider now two ε-plenty conditions based on inclusions (3) and (4):

A: for every (x, y) ∈ graph(F ) and for every ε ∈ (0, ηω(x, y)) there
holds inclusion (3);
B: for every (x, y) ∈ graph(F ) and for every ε ∈ (0, ηω(x, y)) there

holds inclusion (4).

Theorem 1 (cf. [18, p. 148, Theorem 9]). Let X and Y be metric
spaces, let the metric space X be complete, and let the multifunction
F : X → Y have a locally closed graph. Let ω > 0 be a real number.
Then conditions A and B are equivalent.

Condition A is the best one in that inclusion (3) may fail if ε >
ηω(x, y). Indeed, if graph(F ) = {(x, x) ∈ R2;x > 0}, then η1(x, x) = x.
Moreover, B(x, ε) = (x − ε, x + ε) 6⊆ (0, x + ε) = F (B(x, ε)) whenever
ε > η1(x, x).

If F has a closed graph, then condition A implies uniform openness
on graph(F ): for every ε > 0 and for every (x, y) ∈ graph(F ) there
holds inclusion (3). Otherwise, it implies only local uniform openness:
there exists an open covering W of graph(F ) such that for every W ∈
W there exists ζ > 0 such that for every ε ∈ (0, ζ) and for every
(x, y) ∈ W ∩ graph(F ) there holds inclusion (3). A suitable open
covering W is the collection of sets

W (a, b) = B(a, θ(a, b))×B(b, ωθ(a, b))

where (a, b) ∈ graph(F ) and θ(a, b) = ηω(a, b)/2. Moreover, for each
member of the collection, a suitable ζ is θ(a, b) because

θ(a, b) ≤ inf{ηω(x, y); (x, y) ∈ W (a, b) ∩ graph(F )}.
Indeed, if (a, b) ∈ graph(F ) and (x, y) ∈ W (a, b) ∩ graph(F ), then

|ηω(x, y)−2θ(a, b)| = |ηω(x, y)−ηω(a, b)| ≤ max{d(x, a), d(y, b)/ω} ≤ θ(a, b),

hence θ(a, b) ≤ ηω(x, y).
Theorem 2 below improves on Theorem 1 by replacing the ε-plenty

condition B with an ε-scanty condition. In the setting of the new result,
the metric space Y is also complete and resembles normed spaces.

The definition of resemblance is suggested by the elementary fact
that, if M is a metric space, c ∈ M , r > 0, and r′ > 0, then
B(B(c, r), r′) ⊆ B(c, r + r′), and moreover, the corresponding equality
holds provided that M is a normed space. Here, B(S, r) stands for the
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union of all open balls B(c, r) with c ∈ S. Note parenthetically that
B(S, r) = B(S, r) whenever S ⊆M and r > 0.

The metric spaceM is said to resemble normed spaces ifB(B(c, r), r′) =
B(c, r + r′) for all c ∈ M , r > 0, and r′ > 0 (see Definition 2.2 in [17,
p. 204]; cf. the definition of γ-convexity in [7, p. 271]). For further prop-
erties of metric spaces which resemble normed spaces we refer to [17,
p. 9, Theorem 6.1].

Consider now an ε-scanty condition based on inclusion (4):

C: for every (x, y) ∈ graph(F ) and for every ζ > 0 there exists
ε ∈ (0, ζ) such that inclusion (4) holds.

Theorem 2 (see [19, p. 2216, Theorem 6]). Let X and Y be complete
metric spaces, let the metric space Y resemble normed spaces, and let
the multifunction F : X → Y have a locally closed graph. Let ω > 0 be
a real number. Then conditions A and C are equivalent.

Further, let α ∈ (0, 1) be a real number. If ζ > 0 and if for every
ε ∈ (0, ζ) there holds inclusion (4), then for every ε ∈ (0, ζ) there holds
also the inclusion

B(B(y, ω(1− α)ε), ωαε) ⊆ B(F (B(x, (1− α)ε)), ωαε)

(recall a parenthetic note above). If, in addition, the metric space Y
resembles normed spaces, then the preceding inclusion states

(5) B(y, ωε) ⊆ B(F (B(x, (1− α)ε)), ωαε).

Let us say for the time being that a set Σ ⊆ graph(F )× (0,+∞) is
a pre-complete system if for every (x, y) ∈ graph(F ) there exists ζ > 0
such that {(x, y)} × (0, ζ) ⊆ Σ (cf. [5, p. 16, Definition 1.1]).

For example, if F has a locally closed graph, then the set

Σ = {((x, y), ε); (x, y) ∈ graph(F ), ε ∈ (0, ηω(x, y))}

is a pre-complete system, and condition A states inclusion (3) holds for
all points ((x, y), ε) of Σ, whereas condition B states that inclusion (4)
holds for all points (x, y), ε) of Σ.

In the setting of some subtraction results, a corollary states that
inclusion (3) holds for all points ((x, y), ε) of a certain pre-complete
system Σ if so does inclusion (4) (cf. [12, p. 97], where X and Y are
normed spaces, and F is a linear continuous function, therefore Σ =
graph(F )× (0 +∞); see [5, p. 17, Theorem 1.5], where F is a function;
see [3, pp. 47, 48, Theorem 3.1] where Y is a normed space and F has
a complete graph).

The corresponding equivalence, however, may fail if Y does not re-
semble normed spaces (see the second counterexample in Section 6,
where Σ = graph(F )× (0,+∞)).

If Y is complete and resembles normed spaces, we can get rid of any
pre-complete system Σ as far as inclusion (5) is concerned. Actually,
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we can improve on condition C by replacing inclusion (4) with the near
version of inclusion (5), namely with the inclusion

(6) B(y, ωε) ⊆ B(F (B(x, (1− α)ε)), ωαε).

(cf. [3, p. 40, Corollary 2.2]). Our main result involves an ε-scanty
condition based on inclusion (6):

D: for every (x, y) ∈ graph(F ) and for every ζ > 0 there exists
ε ∈ (0, ζ) such that inclusion (6) holds.

Theorem 3. Let X and Y be complete metric spaces, let the metric
space Y resemble normed spaces, and let the multifunction F : X → Y
have a locally closed graph. Let ω > 0 and α ∈ (0, 1) be real numbers.
Then conditions A and D are equivalent.

Theorem 3 may fail if the metric space Y does not resemble normed
spaces (see the third counterexample in Section 6).

3. Proof of Theorems 2 and 3

Let Ω > 0 and consider the v-directional inequality

(7) d(v,B(y,Ωε) ∩ F (B(x, ε))) < d(v, y)(1− ε/ζ).

Here, d(p, S) stands for the distance from the point p to the set S. This
inequality is equivalent to the v-directional relation

(8) ∅ 6= B(v, d(v, y)(1− ε/ζ)) ∩B(y,Ωε) ∩ F (B(x, ε)),

which makes sense iff both v ∈ Y \ {y} and ε ∈ (0, ζ), and which is
surely false if ζ ≤ d(v, y)/Ω, for it is empty the intersection of the open
balls B(v, d(v, y)(1− ε/ζ)) and B(y,Ωε).

Further, let ω > 0 and Ω > 0 be real numbers, and consider an
ε-scanty condition based on inequality (7), namely the global condition

G(Ω): for every (x, y) ∈ graph(F ), for every v ∈ Y \ {y}, and for
every ζ > d(v, y)/ω there exists ε ∈ (0, ζ) such that inequal-
ity (7) holds.

Condition G(Ω) is surely false if Ω ∈ (0, ω), for relation (8) is surely
false whenever ζ ∈ (d(v, y)/ω, d(v, y)/Ω]. Obviously, if 0 < Ω < Ω′,
then condition G(Ω) implies condition G(Ω′).

Each of the conditions C and D implies a condition G(Ω) for some
Ω ≥ ω.

Proposition 1. Let the metric space Y resemble normed spaces. Let
ω > 0 be a real number. Then condition C implies condition G(ω).

Proposition 1 is a corollary of the pointwise lemma below.

Lemma 1. Let the metric space Y resemble normed spaces. Let ω > 0
be a real number. Let (x, y) ∈ graph(F ), let v ∈ Y \ {y}, let ζ >
d(v, y)/ω, and let ε ∈ (0, ζ) such that inclusion (4) holds. Let Ω = ω.
Then inequality (7) holds too.
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Proof. Let θ = d(v, y)/(ζω) and note θ ∈ (0, 1). Since inclusion (4)
holds, it follows

B(v, d(v, y)− θωε) ∩B(y, ωε) ⊆ B(F (B(x, ε))).

Since Y resembles normed spaces, it follows the left hand side of the
preceding inclusion is nonempty, and so is the set

B(v, d(v, y)− θωε) ∩B(y, ωε) ∩B(F (B(x, ε))).

Therefore inequality (7) holds. �

Proposition 2. Let the metric space Y resemble normed spaces. Let
ω > 0 and α ∈ (0, 1) be real numbers, and let Ω = ω(1 + α)/(1 − α).
Then condition D implies condition G(Ω).

To prove this result, we note that condition D(α) can be rephrased
as follows: for every (x, y) ∈ graph(F ) and for every ζ > 0 there exists
ε ∈ (0, ζ) such that

(9) B

(
y,

ω

1− α
ε

)
⊆ B

(
F (B(x, ε)),

ωα

1− α
ε

)
.

Now, Proposition 2 is a corollary of the pointwise lemma below.

Lemma 2. Let the metric space Y resemble normed spaces. Let ω > 0
and α ∈ (0, 1) be real numbers. Let (x, y) ∈ graph(F ), let v ∈ Y \ {y},
let ζ > d(v, y)/ω, and let ε ∈ (0, ζ) such that inclusion (9) holds. Let
Ω = ω(1 + α)/(1− α). Then inequality (7) holds too.

Proof. Let θ = α + (1 − α)d(v, y)/(ωζ), and note θ ∈ (0, 1). Since
inclusion (9) holds, it follows

B

(
v, d(v, y)− θ ω

1− α
ε

)
∩B

(
y,

ω

1− α
ε

)
⊆ B

(
F (B(x, ε)),

ωα

1− α
ε

)
.

Since Y resembles normed spaces, it follows open set in the left hand
side of the preceding inclusion is nonempty, and so is the set

B

(
v, d(v, y)− θ ω

1− α
ε

)
∩B

(
y,

ω

1− α
ε

)
∩B

(
F (B(x, ε)),

ωα

1− α
ε

)
.

Let q be a point of the preceding set. Then there exists q′ ∈ F (B(x, ε))
such that

q′ ∈ B
(
q,

ωα

1− α
ε

)
⊆ B(v, d(v, y)(1− ε/ζ)) ∩B(y,Ωε).

Therefore relation (8) holds. �

The proof of Theorem 2 follows from the sequence of implications

A 1st⇒ C 2nd⇒ G(ω)
3rd⇒ A.

The first implication is obvious. The second implication follows from
Proposition 1 above. The third implication follows from Theorem 4
below.
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The proof of Theorem 3 follows from the sequence of implications

A 1st⇒ D 2nd⇒ G(Ω)
3rd⇒ A

where Ω = ω(1 + α)/(1 − α). The first implication is obvious. The
second implication follows from Proposition 2 above. The third impli-
cation follows from Theorem 4 below.

Theorem 4. Let X and Y be complete metric spaces, let the metric
space Y resemble normed spaces, and let the multifunction F : X → Y
have a locally closed graph. Let Ω ≥ ω > 0 be real numbers. Then
conditions A and G(Ω) are equivalent.

4. Proof of Theorem 4

Let H be the set of all positive functions η : graph(F )→ R∪{+∞},
let η ∈ H, consider the ε-plenty condition

A(η): for every (x, y) ∈ graph(F ) and for every ε ∈ (0, η(x, y))
there holds inclusion (3),

and note that, if F has a locally closed graph, then ηω ∈ H and condi-
tion A(ηω) reduces to condition A.

Proposition 3. Let the metric space Y resemble normed spaces. Let
ω > 0 be a real number and let η ∈ H. Then condition A(η) implies
condition G(ω).

Proposition 3 is a corollary of the pointwise lemma below.

Lemma 3. Let the metric space Y resemble normed spaces, let Ω = ω,
let (x, y) ∈ graph(F ), and let v ∈ Y \ {y}. If there exists ζ > 0
such that for every ε ∈ (0, ζ) there holds inclusion (3), then for every
ζ > d(v, y)/ω there exists ε ∈ (0, ζ) such that inequality (7) holds.

Proof. Let ζ ′ > 0 such that condition (3) holds for all ε ∈ (0, ζ ′), let
ζ ′′ > d(v, y)/ω, and let any ε ∈ (0, ζ ′)∩(0, ζ ′′)). Then it is nonempty the
subset B(v, d(v, y)(1− ε/ζ)) ∩B(y, ωε) of F (B(x, ε)), and relation (8)
holds. �

Further, for every Ω > 0 and for every η ∈ H, consider the ε-scanty
condition

G(Ω, η): for every (x, y) ∈ graph(F ), for every v ∈ B(y, ωη(x, y))\
{y}, and for every ζ > d(v, y)/ω there exists ε ∈ (0, ζ) such that
inequality (7) holds.

By convention, B(y,+∞) = Y . Obviously, condition G(Ω) implies
condition G(Ω, η) for all η ∈ H.

Further, for every Ω > 0, denote by HΩ the set of all η ∈ H with the
following properties:

0 < η(x, y) ≤ ηΩ(x, y) for all (x, y) ∈ graph(F );
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η is either everywhere infinite or everywhere finite, in which
case
|η(x′, y′) − η(x, y)| ≤ max{d(x′, x), d(y′, y)/Ω} for all (x, y) ∈
graph(F ) and for all (x′, y′) ∈ graph(F ).

Clearly, HΩ is nonempty iff graph(F ) is locally closed, in which case
ηΩ ∈ HΩ.

Now, the proof of Theorem 4 follows from the sequence of implica-
tions

A(ηω)
1st⇒ G(ω)

2nd⇒ G(Ω)
3rd⇒ G(Ω, ηΩ)

4th⇒ A(ηΩ)
5th⇒ G(ω)

6th⇒ G(ω, ηω)
7th⇒ A(ηω).

The first and fifth implications follows from Proposition 3 above. The
second, third, and sixth implications are obvious. The fourth and
seventh implications follows from Theorem 5 below, where the met-
ric space Y does not necessarily resemble normed spaces.

Theorem 5. Let X and Y be complete metric spaces, and let the multi-
function F have a locally closed graph. Let Ω ≥ ω > 0 be real numbers,
and let η ∈ HΩ. Then conditions A(η) and G(Ω, η) are equivalent.

5. Proof of Theorem 5

First we rephrase condition A(η) in a form which resembles condi-
tion G(Ω, η). The lemma below will be usefull in this regard.

Lemma 4. Let ω > 0 be a real number. Let (x, y) ∈ graph(F ) and let
ζ > 0. Then the following two conditions are equivalent:

for every ε ∈ (0, ζ) there holds inclusion (3);
for every v ∈ B(y, ωζ) \ {y} and for every ε ∈ (d(v, y)/ω, ζ)
there holds the relation v ∈ F (B(x, ε)).

Proof. First, let the former condition be satisfied, let v ∈ B(y, εζ)\{y},
and let ε ∈ (d(v, y)/ω, ζ). Since ε ∈ (0, ζ), it follows inclusion (3) holds,
hence v ∈ F (B(x, ε)), and the latter condition is satisfied too.

Finally, let the latter condition be satisfied, let ε ∈ (0, ζ), and let
v ∈ B(y, ωε). If v = y, then v ∈ F (x). If v 6= y, then v ∈ B(y, ωζ)\{y}
and ε ∈ (d(v, y)/ω, ζ), hence v ∈ B(F (x, ε)). To conclude, inclusion (3)
holds, and the former condition is satisfied too. �

In view of this lemma, for every η ∈ H, condition A(η) can be
rephrased as follows:

for every (x, y) ∈ graph(F ), for every v ∈ B(y, ωη(x, y)) \ {y},
and for every ε ∈ (d(v, y)/ω, η(x, y)) there holds the relation
v ∈ F (B(x, ε)).

Further, for every η ∈ H and v ∈ Y , consider the set

S(η, v) = {(x, y) ∈ graph(F ); v ∈ B(y, ωη(x, y)) \ {y}}.
Now, conditions A(η) and G(Ω, η) can be rephrased as follows:
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for every v ∈ Y , for every (x, y) ∈ S(η, v), and for every
ε ∈ (d(v, y)/ω, η(x, y)) there holds the relation v ∈ F (B(x, ε).
for every v ∈ Y , for every (x, y) ∈ S(η, v), and for every
ζ > d(v, y)/ω there exists ε ∈ (0, ζ) such that inequality (7)
holds;

Therefore conditions A(η) and G(Ω, η) are equivalent provided that so
are their v-components.

Theorem 6. Let the metric spaces X and Y be complete, and let the
multifunction F : X → Y have a locally closed graph. Let Ω ≥ ω > 0
be real numbers, let η ∈ HΩ, and let v ∈ Y . Then the following two
conditions are equivalent:

for every (x, y) ∈ S(η, v) and for every
ε ∈ (d(v, y)/ω, η(x, y)) there holds the relation v ∈ F (B(x, ε)).
for every (x, y) ∈ S(η, v) and for every
ζ > d(v, y)/ω there exists ε ∈ (0, ζ) such that inequality (7)
holds;

Proof. First, let the former condition be satisfied, let (x, y) ∈ S(η, v),
let ζ > d(v, y)/ω, let any ε ∈ (d(v, y)/ω, η(x, y)) ∩ (d(v, y)/ω, ζ), and
note v ∈ B(v, d(v, y)(1 − ε/ζ)) ∩ B(y,Ωε). According to the former
condition, there holds the relation v ∈ F (B(x, ε)), hence relation (8)
holds, and the latter condition is satisfied too.

Second, let the latter condition be satisfied, and let (x, y) ∈ S(η, v)
and ε ∈ (d(v, y)/ω, η(x, y)). We have to show that v ∈ F (B(x, ε)). Let
θ ∈ (d(v, y)/(ωε), 1). Following the spirit of some ideas in [1, p. 195],
[2, p. 76], [8, p. 572], and [10, p. 30] (cf. also [14, p. 222], [15, pp. 81,
82], [16, p. 404], [17, p. 208], [19, p. 2217]), we endow the space X × Y
with the metric

dΩ((x1, y1), (x2, y2)) = max{d(x1, x2), d(y1, y2)/Ω},

and we apply the variational principle of Ekeland [6, p. 324] to the
function

(p, q) ∈ graph(F )→ d(v, q) ∈ R
in order to get a point (a, b) ∈ graph(F ) such that

d(v, b) + θωdΩ((a, b), (x, y)) ≤ d(v, y)

(see [1, p. 195] and [11, p. 815]) and such that

d(v, b) < d(v, q) + θωdΩ((p, q), (a, b))

for every (p, q) ∈ graph(F ) \ {(a, b)}. Since d(v, y) < θωε, it follows
from the former inequality of the Ekeland principle that dΩ((a, b), (x, y)) <
ε, hence a ∈ B(x, ε) and b ∈ B(y,Ωε). Since ε < η(x, y) ≤ ηΩ(x, y), it
follows

(B(x, ε)×B(y,Ωε)) ∩ graph(F ) ⊆ graph(F ).
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To conclude, (a, b) ∈ graph(F ), hence b ∈ F (a) ⊆ F (B(x, ε)). We
claim that v = b. Suppose, to the contrary, that b 6= v. Since d(v, y) <
θωη(x, y), it follows from the former inequality of the Ekeland principle
and from the Lipschitz property of the function η ∈ HΩ that

d(v, b)+θωdΩ((a, b), (x, y)) < θωη(x, y) ≤ θωη(a, b)+θωdΩ((a, b), (x, y)),

therefore d(v, b) < θωη(a, b). To conclude, (a, b) ∈ S(η, v). Now, let
µ = d(v, b)/(θω). Since (a, b) ∈ S(η, v) and µ > d(v, b)/ω, it follows by
the later condition that there exists λ ∈ (0, µ) such that the set

S = B(v, d(v, b)(1− λ/µ)) ∩B(b,Ωλ) ∩ F (B(a, λ))

is nonempty. Let q ∈ S. Since q ∈ F (B(a, λ)), it follows there exists
p ∈ B(a, λ) such that q ∈ F (p). Since d(q, b) < Ωλ, it follows

dΩ((p, q), (a, b)) < λ.

Since q ∈ S, it follows d(q, v) < d(v, b)(1−λ/µ), hence q 6= b, therefore
(p, q) ∈ graph(F )\{(a, b)}. Further, it follows from the latter inequality
of the Ekeland principle that d(v, b) < d(v, b)(1−λ/µ)+θωλ, therefore
d(v, b)/(θω) < µ, a contradiction. To conclude, v = b, the former
condition is satisfied too, and the proof is accomplished. �

6. Counterexamples

The first counterexample shows that near openness at a point may
fail to imply openness at that point even if the multifunction has a
closed graph (cf. [19, §-11]). Let Q be the set of all rational numbers,
consider the Hilbert space l2(Q), and let F : l2(Q) → R be given
through

graph(F ) = {(qδq, q); q ∈ Q}.
Here, δq : Q → R stands for the Kronecker function, i.e. δq(p) = 1 if
p = q, whereas δq(p) = 0 if p 6= q, so that δq ∈ l2(Q) and ‖δq‖ = 1.
Clearly, (0, 0) ∈ graph(F ). Moreover, F (B(0, ε)) = Q ∩ B(0, ε) and

F (B(0, ε)) = B(0, ε)) for all ε > 0, hence F is nearly open at (0, 0) but
F is not open there. Closeness of the graph of F follows from the fact
that ‖qδq − q′δq′‖ =

√
|q|2 + |q′|2 whenever q 6= q′.

The second counterexample shows that, if the metric space Y does
not resemble normed spaces, then the implication stated by the result
in [5, p. 17, Theorem 1.5] can not be improved to an equivalence.

Let M be a set with at least two points, and let the set M be endowed
with the discrete metric (see [4, p. 30]), i.e. d(p, q) = 0 if p = q,
whereas d(p, q) = 1 if p 6= q. Clearly, M is complete. In addition,
B(c, r) = {c} if 0 < r ≤ 1, whereas B(c, r) = M if r > 1. Accordingly,
B(B(c, r), r′) = {c} 6= M = B(c, r+ r′) if r ≤ 1, r′ ≤ 1, and 1 < r+ r′.
To conclude, M does not resemble normed spaces.

Further, let F : M →M be the multifunction given through graph(F ) =
{(x, y); y = x}. Then F has a closed graph.
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Now, let ω = 1 and let α ∈ (0, 1). Then inclusion (3) holds for all
(x, y) ∈ graph(F ) and for all ε > 0, but inclusion (5) does not hold,
namely it does not hold for any ε ∈ (1, 1/α] ∩ (1, 1/(1 − α)] because
B(y, ωε) = M , whereas B(F (B(x, (1− α)ε)), ωαε) = {x}.

The third counterexample shows that, if the metric space Y does not
resemble normed spaces, then Theorems 2 and 3 may fail. The simplest
counterexample follows (cf. [17, pp. 209, 210, Counterexample 5.2]).

Indeed, let ω > 1 and let α ∈ (0, 1). Then condition A does not
hold, namely inclusion (3) does not hold for any ε ∈ (1/ω, 1], because
B(y, ωε) = M but F (B(x, ε)) = {x}. Nevertheless, condition C does
hold and condition D(α) does hold for each α ∈ (0, 1), namely inclu-

sions (4) and (5) hold for all ε ∈ (0, 1/ω], because B(y, ωε), F (B(x, ε)),
and B(F (B(x, (1− α)ε)), ωαε) equal {x}.

To close this section we illustrate, in case of the multifunction F :
M → M above, all the situations which involve the three items of
Theorem 6, that is, the set S(η, v) and the two equivalent conditions
based on the set S(η, v): the set S(η, v) is empty and the two equivalent
conditions are true (but useless); the set S(η, v) is nonempty and the
two equivalent conditions are false; the set S(η, v) is nonempty and the
two equivalent conditions are true.

Let Ω ≥ ω > 0, let η ∈ H, and let v ∈ M . First, (x, y) ∈ S(η, v)
iff both y 6= v and η(x, y) > 1/ω. Second, if (x, y) ∈ S(η, v), then for
every ε ∈ (d(v, y)/ω, η(x, y)) there holds the relation v ∈ F (B(x, ε))
iff (1/ω, η(x, y)) ⊆ (1,+∞), that is, ω ≤ 1. Third, if (x, y) ∈ S(η, v),
then for every ζ > d(v, y)/ω there exists ε ∈ (0, ζ) such that relation (8)
holds iff for every ζ > 1/ω there holds the relation

∅ 6= (0, ζ) ∩ (1/Ω,+∞) ∩ (1,+∞),

that is, ω ≤ 1. Therefore: if η(x, y) ≤ 1/ω for all y 6= v, then the set
S(η, v) is empty; if 1/ω < η(x, y) for some y 6= v, then the set S(η, v)
is nonempty; if ω > 1, then the two equivalent conditions are false; if
ω ≤ 1, then the two equivalent conditions are true.

7. Final remarks

The global condition G(Ω) implies the local condition

L(Ω): for every (x, y) ∈ graph(F ) there exists δ > 0 such that for
every v ∈ B(y, δ) \ {y} and for every ζ > d(v, y)/ω there exists
ε ∈ (0, ζ) such that inequality (7) holds.

The question arises whether the converse implication holds if the
metric space Y resembles normed spaces. A partial answer is given by
the result below. In the following we say a metric space M resembles
normed spaces to a greater degree if for every c ∈ M and for every
c′ ∈ Y with c 6= c′ as well as for every r > 0 and for every r′ > 0 with
r+r′ = d(c, c′) there exist p ∈M such that d(p, c) = r and d(p, c′) = r′.
A counterexample in [17, pp. 213, 214] shows that a complete metric
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space M which resembles normed spaces may fail to resemble normed
spaces to a greater degree.

Proposition 4. Let the metric space Y resemble normed spaces to
a greater degree. Let Ω ≥ ω > 0 be real numbers. Then the global
condition G(Ω) and the local condition L(Ω) are equivalent.

Proof. Let the local condition L(Ω) be satisfied, let (x, y) ∈ graph(F ),
let v ∈ Y \ {y}, and let ζ > d(v, y)/ω. We have to show that there
exists ε ∈ (0, ζ) such that inequality (7) holds. In view of the local
condition, this is true if v ∈ B(y, δ). Suppose, now, v 6∈ B(y, δ), that
is, δ ≤ d(v, y). Then δ/ω ≤ d(v, y)/ω < ζ, hence λ = δ/(ωζ) < 1.
Let µ = 1 − λ and choose v′ ∈ Y such that d(v′, y) = λd(v, y) and
d(v′, v) = µd(v, y). Since δ = λωζ > λd(v, y) = d(v′, y), it follows from
the local condition that there exists ε ∈ (0, δ/ω) such that

∅ 6= B(v′, d(v′, y)(1− εω/δ)) ∩B(y,Ωε) ∩ F (B(x, ε)).

Obviously, ε ∈ (0, ζ). Now, let w be a point of the nonempty set above.
We assert that w ∈ B(v, d(v, y)(1− ε/ζ)), hence relation (8) holds. To
justify our assertion, we note d(w, v) ≤ d(w, v′)+d(v′, v) ≤ d(v′, y)(1−
εω/δ) + d(v′, v) = λd(v, y)(1− εω/δ) + µd(v, y) = d(v, y)(1− ελω/δ) =
d(v, y)(1− ε/ζ). �
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sation des nombres réels en topologie générale, Actualités Sci. Ind., no 1045,
Hermann et Cie., Paris, 1948. MR MR0027138 (10,260a)

5. A. V. Dmitruk, A. A. Miljutin, and N. P. Osmolovskĭı, Ljusternik’s theorem
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