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Abstract. We consider coupled parabolic systems with homoge-
neous boundary conditions. We establish a family of Lq- Carleman
inequalities, q ∈ [2,∞) and use them to obtain stability estimates
in Lq and L∞ norms for the sources in terms of the solution in
a subdomain. We apply these estimates to reaction-diffusion sys-
tems.

Introduction

In this paper we consider systems of semilinear parabolic equations,
coupled in zero order terms, and we study an inverse problem address-
ing the question of source estimation in Lq and L∞ norms in terms of
norms of the solution measured in a subdomain. The systems we study
arise from reaction-diffusion models which are related to physical phe-
nomena like heat transfer, population dynamics, chemical reactions. In
this context the sources have positive entries and also the solutions re-
main in the cone of positive functions as some extra hypotheses on the
nonlinear part, related to parabolic maximum principle, are assumed.

The main tool in approaching our inverse problem is a family of
generalized Carleman inequalities depending on two independent posi-
tive parameters. Global Carleman estimates were established by O.Yu.
Imanuvilov in the context of controllability of parabolic equations with
controls distributed in subdomains (see the lecture notes by A.Fursikov,
O.Yu. Imanuvilov [12] and V.Barbu [2]).

Our result has as starting point the work of O.Yu.Imanuvilov and
M. Yamamoto, [13], where the authors have considered linear parabolic
equations in bounded domains and established L2 estimates for the
source. In this paper we improve the result to the more general case of
Lq, respectively L∞ estimates for the source, in a linearized model, and
apply these results to nonlinear models of reaction-diffusion systems.
We are able to obtain a sharper source estimate, without involving
the time derivative of the solution in the right side of the estimates
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2 STABILITY IN INVERSE SOURCE PROBLEMS

and the method uses a family of Carleman estimates with generalized
weights and an argument based on the maximum principle for coupled
parabolic systems.

We use the L2 Carleman estimates as the start point to a bootstrap
procedure, which leads to a corresponding class of Lq, q ≥ 2 Carleman
estimates with independent parameters and generalized weights of ex-
ponential type for nonhomogeneous parabolic systems with various ho-
mogeneous boundary conditions. The bootstrap argument is based on
the regularizing effect of the heat flow in Lp spaces (see, for example,the
monograph of O.A.Ladyzenskaja, V.A.Solonikov, N.N. Ural’ceva, [14]).
Other results concerning Carleman inequalities in Lq norms and using
bootstrap technique were established for homogeneous parabolic equa-
tions in connection to controllability problems and regularity of the
controls (see V. Barbu, [3], J.-M.Coron, S.Guerrero, L.Rosier,[5], [15]).
The inverse problem for the linear system with Dirichlet boundary con-
ditions and estimates in Lq norm was investigated in [17]. However the
cited reference relies more on the hypotheses on the sources considered
in [13] while here some particularities appear and sharper estimates are
obtained when considering sources and solutions with positive entries.

1. Preliminaries and main results

Let Ω ⊂ RN be a bounded domain with smooth boundary, ω ⊂⊂ Ω
be an open nonempty subset of Ω, T > 0 and Q = (0, T ) × Ω. For a
given function y : Q→ R, denote by

Dty =
∂y

∂t
,Diy =

∂y

∂xi
, Dijy =

∂2y

∂xi∂xj
.

We denote by W 1,q(Ω),W 1,q
0 (Ω) with q ∈ [1,∞] the usual Sobolev

spaces and by W 2,1
q (Q) the anisotropic Sobolev space

W 2,1
q (Q) =

{
w ∈ Lq(Q)|Dtw,D

2w ∈ Lq(Q)
}
,

with the norm ‖w‖W 2,1
q

= ‖w‖Lq(Q) + ‖Dtw‖Lq(Q) + ‖D2w‖Lq(Q).

In the following we will also work with vector valued functions y =
(y1, . . . , yn) ∈ [W 2,1

q (Q)]n. When denoting the norm of such func-
tions, if there is no confusion, we will still write in a simplified manner
‖y‖W 2,1

q
:= ‖y‖[W 2,1

q (Q)]n =
∑

i=1,n
‖yi‖W 2,1

q
.

For a given Banach space X and 1 ≤ p ≤ +∞ we will use the vector
valued Lebesque and Sobolev spaces Lp(0, T ;X) and

W 1,p(0, T ;X) = {y ∈ Lp(0, T ;X) : y′ ∈ Lp(0, T ;X)}.

Consider also the spaces

Lploc(0, T ;X) =

{
y : (0, T )→ X : y ∈ Lp(ε, T − ε;X), ∀0 < ε <

T

2

}



STABILITY IN INVERSE SOURCE PROBLEMS 3

and

W 1,p
loc (0, T ;X) =

{
y : (0, T )→ X : y ∈ W 1,p(ε, T − ε;X),∀0 < ε <

T

2

}
.

For α ∈ (0, 1), denote by Cα(Ω) respectively Cα(Q) the spaces of
Hölder continuous functions defined on Ω respectively Q. For k ∈ N
one denotes by Ck+α(Ω) or Ck+α(Q) the spaces of functions with k
continuos derivatives which are Hölder continuous with exponent α.

We denote by (Li)i=1,n a family of n uniformly elliptic operators of
second order in divergence form

(1.1) Liw = −
N∑

j,k=1

Dj(a
jk
i Dkw)

with coefficients ajki ∈ W 1,∞(0, T ;W 1,∞(Ω)), i = 1, n, j, k = 1, N . De-

note by Ai = (ajki )j,k=1,N the matrix of coefficients in principal part
which we assume satisfying the usual uniform ellipticity condition

(1.2)
N∑

j,k=1

ajki (t, x)ξjξk ≥ µ|ξ|2, ∀ξ ∈ RN , (t, x) ∈ Q, µ > 0, i = 1, n.

Consider also the first order operators (w is considered a scalar func-
tion),

(1.3) L1
iw =

N∑
k=1

bkiDkw, i = 1, n,

with coefficients bki ∈ W 1,∞(0, T ;L∞(Ω)).
We study the following reaction-diffusion system of n coupled para-

bolic equations
(1.4) Dtyi −

N∑
j,k=1

Dj(a
jk
i Dkyi) + L1

i yi + fi(y1, ..., yn) = gi, (0, T )× Ω,

βi(x) ∂yi
∂nAi

+ ηi(x)yi = 0, (0, T )× ∂Ω,

where gi ≥ 0, i = 1, n are the internal sources acting in each equation
of the system. In the following, when reffering to a vector function
g = (gi)

>
i∈1,n

to be positive, like g ≥ 0, we consider the inequality

satisfied on each component of the vector, gi ≥ 0, i = 1, n.
In the boundary conditions, we denoted by ∂

∂nAi
the conormal deriva-

tives, ∂y
∂nAi

= 〈Ai∇y, n〉. We impose that βi, ηi ∈ C2(∂Ω) such that

(1.5) βi > 0 on ∂Ω or βi ≡ 0 and ηi ≡ 1 on ∂Ω.
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The first of the above boundary condition covers the Neumann and
Robin type and the last one gives the Dirichlet boundary conditions.

The coupling is given through the C1 nonlinearities fi : Rn −→ R
with fi(0) = 0, i = 1, n and we introduce the following hypotheses:

(H1) (quasimonotonicity) for some ε0 > 0, ∂fi
∂yj

(y1, . . . , yn) ≤ 0, y ∈
Vε0(0) := {y ≥ 0, ‖y‖ ≤ ε0}, j 6= i, i, j = 1, . . . , n;

(H2) fi(y1, . . . , yi−1, 0, yi+1, . . . , yn) ≤ 0, i = 1, n, y ≥ 0.

In the following we consider a fixed instant of time θ ∈ (0, T ) which
can be chosen, for the ease of computations θ = T

2
.

In order to describe the framework of our problem, we introduce the
following sets of functions (sources and corresponding solutions).

Let G̃ be a compact subset of [Lq
′
(Q)]n with q′ = q

q−1
such that 0 /∈ G̃.

For q ≥ 2, c̃ > 0, δ̃ > 0 consider the sets of sources:

(1.6) Gq,δ̃,G̃ =

{
g ∈ W 1,1((0, T ); [Lq(Ω)]n) : g ≥ 0

and ∃g̃ ∈ G̃ s.t.
∫
Q
g · g̃dxdt ≥ δ̃‖g‖Lq(Q)

}
and

(1.7) Gq,c̃,δ̃,G̃ =


g ∈ W 1,1((0, T ); [Lq(Ω)]n) : g ≥ 0,∣∣∣∂g(t,x)

∂t

∣∣∣ ≤ c̃|g(θ, x)|, a.e. (t, x) ∈ (0, T )× Ω

and ∃g̃ ∈ G̃ s.t.
∫
Q
g · g̃dxdt ≥ δ̃‖g‖Lq(Q)

 .

One may observe that the functions in set of sources (1.6) do not have
the boundedness condition on the time derivative in relation to a certain
observation instant θ ∈ (0, T ).

Also, consider the set of functions,

(1.8) Fq,M = {y ∈ [W 2,1
q (Q) ∩ L∞(Q)]n : y ≥ 0, ‖y‖L∞(Q) ≤M}.

Problem: Obtain estimates for the sources in a reaction-diffusion
system in terms of the solution in a subdomain, estimates which would
guarantee that small variations of the solution observed on a subdomain
correspond to small variations of the source in the whole domain.

Remark 1. There exist difficulties encountered when trying to extend
the approach in [13] to Lq setting and to the nonlinear case. This lead
us to introduce new classes of sources, not too restrictive for which one
is able to prove stability estimates. With respect to [13], thye class of
sources Gq,c̃,δ̃,g̃ we use in this paper need to have an additional property

(1.9)

∫
Q

g · g̃ ≥ δ̃‖g‖Lq(Q).

for some g̃ belonging to a compact subset of G̃ ⊂ Lq
′
. Observe that

such a property is verified by the sources which are concentrated, in the
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following sense: for ε > 0 and δ1 > 0 fixed, for each entry i there exists
an open subset ω̃i ⊂ Q with Lebesque measure µ(ω̃i) > ε such that

(1.10) δ1‖gi‖L∞(Q) ≤ inf
ω̃i
gi.

Remark that condition (1.10) implies (1.9), by taking g̃ = (1, . . . , 1)>

and for some δ̃ = δ̃(ε, δ1) > 0.

The main results concerning the stability for nonlinear parabolic
systems are the following two theorems:

Theorem 1. (Lq stability estimates)

Let 2 ≤ q <∞. Let δ̃ > 0,M > 0, a compact set G̃ ⊂ Lq
′
(Q), 0 6∈ G̃

and assume that the sources in (1.4) belong to Gq,δ̃,G̃ and the associated
solutions satisfy y ∈ Fq,M .

Assume also that one of the following conditions, (A) or (B), con-
cerning nonlinearity f , holds :

(A) f satisfies the hypothesis (H1) in the whole cone y ≥ 0,

or

(B) q > N+2
2

and f satisfies hypotheses (H1), (H2).

Then an Lq stability estimate holds: there exists C = C(δ̃,M, G̃) > 0
such that

(1.11) ‖g‖Lq(Q) ≤ C‖y‖Lq(Qω).

Theorem 2. (L∞ stability estimates) Let α ∈ (0, 1), q = N+1
1−α and

θ ∈ (0, T ) an intermediate observation instant of time. Consider δ̃ > 0,
M > 0 and a compact set G̃ ⊂ Lq

′
(Q), 0 6∈ G̃ such that the sources in

(1.4) belong to Gq,c̃,δ̃,G̃ ∩ Cα(Q) and the associated solutions y ∈ Fq,M .
Assume also that one of the conditions (A) or (B) holds.

Then there exists C = C(α, c̃, δ̃,M) > 0 such that an L∞ source
estimate holds:

(1.12) ‖g‖L∞(Q) ≤ C(‖y‖Lq(Qω) + ‖y(θ, ·)‖C2+α(Ω)).

Remark 2. We point out the fact that in the above Theorems we are
not interested in the existence of solutions to Cauchy problem associ-
ated to (1.4). In the theory of reaction-diffusion processes most of the
mathematical models contain nonlinear couplings of the equations and
the couplings may have polynomial behaviour at infinity. Existence of
global solutions is proved by specific methods. We refer, for example, to
the papers [8, 9, 7, 10] for models of reaction-diffusion systems without
a source, where the proof of the existence is based on the study of some
entropy functional. There are also models of reaction-diffusion systems
with sources playing the role of a distributed control [5, 6], where exis-
tence is proved on the given interval of time locally around a reference
solution, in spaces of regular enough functions.
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In this paper we study source estimates for reaction-diffusion systems
assuming that solutions exist and satisfy an a priori boundedness esti-
mate (1.8).
We refer to the monograph of M.Choulli [4] for an introduction to in-
verse problems.

The approach for obtaining source estimates for nonlinear systems
is combining a priori estimates for the solution with source estimates
for associated linear systems which in a certain sense approximate the
nonlinear model. The results in the linear case give informations on
the source in the nonlinear problem under apriori L∞ bounds of the
solutions.

Consequently, for the beginning we consider a generic linear para-
bolic problem, with the same principal part as the nonlinear system,
with one of the homogeneous boundary conditions (Dirichlet, Neumann
or Robin) on each component of the vector solution (1.4).

(1.13)

{
Dtyi + Liyi + L1

i yi + L0
i y = gi, (0, T )× Ω,

βi(x) ∂yi
∂nAi

+ ηi(x)yi = 0, (0, T )× ∂Ω, i = 1, n

where gi ≥ 0, i = 1, n are the internal sources and βi, ηi are given as
before in (1.5).

The lower-order operators are given by (w is a scalar function, y is
vector valued function):

(1.14) L1
iw =

∑
k=1,N

bkiDkw, L0
i y =

∑
l=1,n

cliyl, i = 1, n,

with coefficients bki , c
l
i ∈ W 1,∞(0, T ;L∞(Ω)), and the coupling is done

only through the zero-order terms.
We are interested in obtaining Lq and L∞ estimates for the source

g = (gi)i=1,n ∈ Gq,δ̃,G̃ in terms of the solution y measured in Qω. The
result in the linear case is the following:

Theorem 3. Let 2 ≤ q < ∞, δ̃ > 0, c̃ > 0 and a compact set G̃ ⊂
Lq
′
(Q), 0 6∈ G̃. Then, for sources g in Gq,δ̃,G̃ and corresponding solu-

tions y to (1.13) belonging to [W 2,1
q (Q)]n, there exists C = C(δ̃, q) > 0,

such that

(1.15) ‖g‖Lq(Q) ≤ C‖y‖Lq(Qω).

Moreover, for θ ∈ (0, T ), α ∈ (0, 1) and sources g in Gq,δ̃,c̃,G̃ ∩ Cα(Q)

with corresponding solutions y to (1.13) belonging to [W 2,1
q (Q)]n, there

exists C = C(δ̃, q) > 0, such that

(1.16) ‖g‖L∞(Q) ≤ C(‖y‖Lq(Qω) + ‖y(θ, ·)‖C2+α(Ω)).

The proof of the above theorem relies on Lq Carleman estimates
for the parabolic systems under homogeneous boundary conditions
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(Dirichlet, Neumann or Robin) and an argument based on the Maxi-
mum Principle for systems of parabolic equations.

Concerning the Maximum Principle for single parabolic equations
the results are classical and we refer to the monograph of M.H.Protter
and H.F.Weinberger [18]. The case of systems of linear parabolic equa-
tions which are weakly coupled (i.e. coupled in zero order terms) is
also treated in [18], [16] and this is the result we need and we discuss
further.

We mention however that a large interest in literature is devoted to
Maximum Principles for semilinear parabolic systems, formulated in
terms of invariant sets. We refer to [1], [11], [19] where invariance of
closed convex sets is obtained through tangency conditions and sub-
quadratic growth for the couplings of the first order derivatives.

Consider now weakly coupled linear systems of form (1.13) where
the boundary operator is given by

By = (Biyi)i=1,n,Biyi = βi(x)
∂yi
∂nAi

+ ηi(x)yi, i = 1, n.

Under the additional hypothesis that the off-diagonal terms of the
matrix L0 are nonpositive,

(1.17) cli ≤ 0, i 6= l, i, l ∈ 1, n,

the results from [18],[1] give that if yi(0, ·) ≥ 0 in Ω then we have yi ≥ 0
in the whole domain (0, T )×Ω. Moreover, if the solution is zero at an
interior point (t0, x0) ∈ (0, T )× Ω then y ≡ 0 for all t < t0.

The main result concerning the Lq Carleman estimates for systems
of linear parabolic equations (1.13), that we prove in §2 uses some
auxiliary functions. Consider an open subset ω ⊂⊂ Ω and a function
ψ ∈ C2(Ω) such that

1

3
≤ ψ ≤ 4

3
, ψ|∂Ω =

1

3
, {x ∈ Ω : |∇ψ(x)| = 0} ⊂⊂ ω.

One also considers the weight functions

(1.18) ϕ(t, x) :=
eλψ(x)

t(T − t)
, α(t, x) :=

eλψ(x) − e1.5λ‖ψ‖C(Ω)

t(T − t)
.

The result concerning the Lq Carleman estimates for systems of linear
parabolic equations (1.13) is the following

Proposition 1. (Lq-Carleman estimate) Let g ∈ (Lq(Q))n, with 2 ≤
q < ∞. Then there exist s0 = s0(q), λ0 = λ0(q), such that if λ > λ0,
s′, s > s0, s′

s
> Γ > 1, then there exists C = C(q,Γ) such that the

solutions y ∈ W 2,1
q (Q) to (1.13), satisfy the estimate:
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(1.19)

‖yes′α‖Lq(Q) + ‖(Dy)es
′α‖Lq(Q) + ‖(D2y)es

′α‖Lq(Q) + ‖(Dty)es
′α‖Lq(Q)

≤ C
[
‖gesα‖Lq(Q) + ‖yesα‖L2(Qω)

]
.

The above result is based on the regularizing effect of the para-
bolic flow combined with a bootstrap argument applied to the linear
parabolic system and using as a start point the following classical L2

Carleman estimate ( see [13]):

Proposition 2. For g ∈ L2(Q), there exist constants λ0 = λ0(Ω, ω),
s0 = s0(Ω, ω) such that, for any λ ≥ λ0, s ≥ s0 and some C =
C(T,Ω, ω), the following inequality holds:
(1.20)∫

Q

[
(sϕ)−1

(
|Dty|2 + |D2y|2

)
+ sλ2ϕ|Dy|2 + s3λ4ϕ3|y|2

]
e2sαdxdt

≤ C

(∫
Q

|g|2e2sαdxdt+

∫
[0,T ]×ω

s3λ4ϕ3|y|2e2sαdxdt

)
,

for y ∈ [H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω))]n solutions of (1.13).

2. Lq-Carleman estimates with general weights.Proof of
Proposition 1

We consider the system (1.13) written in a more compact way,

(2.1)

{
Dty + Ly + L1y + L0y = g ≥ 0, (0, T )× Ω,

By = 0, (0, T )× ∂Ω.

The proof of these Lq estimates is based on the regularising proper-
ties of parabolic flows and Sobolev embeddings for anisotropic Sobolev
spaces. Such classical embedding results may be found in [14], Lemma
3.3; we will use the following reduced form of the cited result:

Lemma 1. Consider u ∈ W 2,1
p (Q).

Then u ∈ Z1 where

Z1 =


Lq(Q) with q ≤ (n+2)p

n+2−2p
when p < N+2

2

Lq(Q) with q ∈ [1,∞), when p = N+2
2

Cα,α/2(Q) with 0 < α < 2− N+2
p
, when p > N+2

2

and there exists C = C(Q, p,N) such that

‖u‖Z1 ≤ C‖u‖W 2,1
p (Q).

Moreover, Du ∈ Z2 where

Z2 =


Lq(Q) with q ≤ (N+2)p

N+2−p when p < N + 2

Lq(Q) with q ∈ [1,∞), when p = N + 2
Cα,α/2(Q) with 0 < α < 1− N+2

p
, when p > N + 2



STABILITY IN INVERSE SOURCE PROBLEMS 9

and there exists C = C(p,N) such that

‖Du‖Z2 ≤ C‖u‖W 2,1
p (Q).

In order to prove the Lq Carleman estimates, we introduce the fol-
lowing auxiliary functions based on the functions from (1.18):

ψ := inf
x∈Ω

ψ(x), ψ := sup
x∈Ω

ψ(x),

ϕ :=
eλψ

t(T − t)
, ϕ :=

eλψ

t(T − t)
, α :=

eλψ − e1.5λψ

t(T − t)
, α :=

eλψ − e1.5λψ

t(T − t)
.

Remark 3. Concerning the weights involved in the Carleman inequal-
ities, one may observe that for all m > 0 and σ0 > 1, there exist
λ̃0 = λ̃0(σ0) > 0 and C = C(m) such that if λ > λ0 and s1, s2 > 0 with
s2
s1

= σ > σ0, one has

(2.2) ϕmsm2 λ
mes2α ≤ C(m)es1α,

with ϕ, α defined in (1.18).
It follows from the following stronger inequality:

(2.3) ϕmsm2 λ
mes2α ≤ C(m)es1α.

Indeed, for some σ > σ0 and for some λ̃0(σ0) > 0 we have for λ > λ̃0

that

−(σ − 1)e1.5λψ + σeλψ − eλψ ≤ −σλeλψ.
Consequently, (2.3) follows from the inequalities

emλψσmsm1 λ
m

tm(T − t)m
e
−(σ−1)s1e

1.5λψ+σs1e
λψ−s1e

λψ

t(T−t) ≤ emλψσmsm1 λ
m

tm(T − t)m
e
−σs1λe

λψ

t(T−t)

≤ supµ∈[0,∞)µ
me−µ = C(m).

We proceed now to the bootstrap argument. For a given γ > 1 and
j ∈ N we denote by

zj := yeγ
jsα = zj−1eγ

j−1sα(γ−1).

Observe that since γ > 1, for fixed j there exists λ̄0(j) > 0 such that

(2.4) eγ
jsα < eγ

jsα < esα for all λ ≥ λ̄0(j).

Each zj verifies the problem
(2.5)

Dtz
j + Lzj = geγ

jsα +O[sγjϕ2eγ
j−1sα(γ−1)]zj−1, in (0, T )× Ω

Bzj = 0, on (0, T )× ∂Ω,

zj(0, ·) = 0 in Ω



10 STABILITY IN INVERSE SOURCE PROBLEMS

At this point we construct a sequence {qj}j∈N taking into account the
regularity argument from Lemma 1:

(2.6) q0 = 2, qj :=


(N + 2)qj−1

N + 2− qj−1

, if qj−1 < N + 2,

3
2
qj−1, if qj−1 ≥ N + 2.

The sequence {qj}j∈N is increasing to infinity. Since g ∈ Lq(Q), we
consider m such that qm−1 ≤ q < qm. Observe that by standard
Sobolev embedding we have:

(2.7) W 1,qj−1(Q) ⊂ Lqj(Q), j = 1, . . . ,m,

since the Sobolev exponent q∗j :=
(N+1)qj−1

N+1−qj−1
> qj.

One may observe that a similar argument as in Remark 3 give that
there exists S0,Λ0 ≥ 0 and C = C(j) > 0 such that for s ≥ S0, λ ≥ Λ0

and j = 1,m we have

(2.8) sγjϕ2eγ
j−1sα(γ−1) ≤ C(j).

Since zj(0, ·) = 0, from parabolic regularity and using the previous

estimate (2.8), for λ big enough (λ > max{λ0,Λ0,maxj=1,m{λ̃j, λ̄j}})
we have

(2.9) ‖zj‖W 2,1
qj−1

(Q) ≤ C
(
‖geγjsα‖Lqj−1 (Q) + ‖zj−1‖Lqj−1 (Q)

)
By Lemma 1 and (2.7) we have that zj ∈ Lqj(Q) and the previous
inequality gives for j = 1, . . . ,m

(2.10) ‖zj‖Lqj (Q) ≤ C
(
‖geγjsα‖Lqj−1 (Q) + ‖zj−1‖Lqj−1 (Q)

)
,

and so

(2.11) ‖zm‖Lqm (Q) ≤ C

(
m−1∑
j=1

‖geγjsα‖Lqj (Q) + ‖z0‖Lq0 (Q)

)
.

Lemma 1 gives also that ‖Dzm‖Lqm (Q) ≤ ‖zm‖W 2,1
qm−1

(Q), meaning that

we have estimates also for first order derivatives
(2.12)

‖zm‖Lqm (Q) + ‖Dzm‖Lqm (Q) ≤ C

(
m−1∑
j=1

‖geγjsα‖Lqj (Q) + ‖z0‖Lq0 (Q)

)
.

Since

‖yeγmsα‖Lq(Q) ≤ ‖yeγ
msα‖Lq(Q) ≤ C‖yeγmsα‖Lqm (Q)

and

‖Dyeγmsα‖Lq(Q) ≤ ‖Dyeγ
msα‖Lq(Q) ≤ C‖Dyeγmsα‖Lqm (Q),
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using (2.12) we can obtain a partial estimate,
(2.13)

‖yeγmsα‖Lq(Q)+‖Dyeγ
msα‖Lq(Q) ≤ C

[
m−1∑
j=1

‖geγjsα‖Lqj (Q) + ‖z0‖Lq0 (Q)

]
.

Now we use (2.4), the fact that q0 = 2, z0 = yesα, and the L2 Carle-
man inequality (1.20) to properly bound ‖z0‖Lq0 (Q):

(2.14)
‖yesα‖L2(Q) ≤ C‖ye

1
γ
sα‖L2(Q)

≤ C
(
‖ge

1
γ
sα‖L2(Q) + ‖s 3

2λ2ϕ
3
2ye

1
γ
sα‖L2(Qω)

)
.

Using (2.4), Remark 3 and the fact that q > qj for all qj ∈ 1,m− 1,
there exists C > 0 such that the right hand-side of (2.13) is bounded
as follows

(2.15)

m−1∑
j=1

‖geγjsα‖Lqj (Q) + ‖ge
1
γ
sα‖L2(Q) + ‖s

3
2λ2ϕ

3
2ye

1
γ
sα‖L2(Qω)

≤ C
(
‖ge

1
γ
sα‖Lq(Q) + ‖ye

1
γ2 sα‖L2(Qω)

)
.

In order to obtain estimates for time derivatives and second order space
derivatives, we return to the parabolic problem verified by zm+1:
(2.16)
Dtz

m+1 + Lzm+1 = geγ
m+1sα +O[sγm+1ϕ2eγ

msα(γ−1)]zm, (0, T )× Ω

Bzm+1 = 0, (0, T )× ∂Ω,

zm+1(0, ·) = 0, Ω

Parabolic regularity along with (2.8) gives

(2.17) ‖zm+1‖W 2,1
q (Q) ≤ C

(
‖geγm+1sα(γ−1)‖Lq(Q) + ‖zm‖Lq(Q)

)
which implies, using again (2.4), (2.11) and (2.15) that

(2.18)
‖D2yeγ

m+1sα‖Lq(Q) ≤ ‖D2yeγ
m+1sα‖Lq(Q) = ‖D2zm+1‖Lq(Q)

≤ C
(
‖ge

1
γ
sα‖Lq(Q) + ‖ye

1
γ2 sα‖L2(Qω)

)
and using (2.8), (2.4), (2.11), (2.15) that

(2.19)
‖(Dty)eγ

m+1sα‖Lq(Q) ≤ ‖Dtz
m+1‖Lq(Q) + C‖zm‖Lq(Q)

≤ C
(
‖ge

1
γ
sα‖Lq(Q) + ‖ye

1
γ2 sα‖L2(Qω)

)
.

From (2.13),(2.15),(2.18) and (2.19) and taking γ = Γ
1

m+3 , s changed
into 1

γ2 s, we obtain the conclusion,

(2.20)

‖yes′α‖Lq(Q) + ‖(Dy)es
′α‖Lq(Q) + ‖(D2y)es

′α‖Lq(Q) + ‖(Dty)es
′α‖Lq(Q)

≤ C
(
‖gesα‖Lq(Q) + ‖yesα‖L2(Qω)

)
.
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3. Lq estimates for the source term of the linear system

Lemma 2. Let ω ⊂⊂ Ω, and consider (ym)m a sequence of solutions
for the system (1.13) with corresponding sources (gm)m ⊂ Lq(Q). If
(gm)m is bounded in Lq(Q) and (ym)m is bounded in Lq(Qω), then there
exist subsequences also denoted by (ym)m, (gm)m, and, correspondingly,
y ∈ Lqloc(0, T ;W 1,q(Ω)), g ∈ Lq(Q) such that ym −→ y strongly in
Lq(ε, T − ε;W 1,q(Ω)), for all 0 < ε < T

2
, gm ⇀ g weakly Lq(Q) and y

is the solution to (1.13) corresponding to g.

Proof. The boundedness of (gm)m in Lq(Q) and of (ym)m in Lq(Qω) as-
sures, by Carleman estimate for the solution ym of (1.13) corresponding
to the sources gm, that (ym)m is bounded in W 2,1

q (Qε), ε > 0 arbitrarily
small, where Qε is a cylinder of form Qε = (ε, T − ε)×Ω. This implies
that (ym)m is bounded in Lq(ε, T − ε;W 2,q(Ω)) and Dty

m is bounded in
Lq(ε, T − ε;Lq(Ω)). Since W 2,q(Ω) ⊂ W 1,q(Ω) ⊂ Lq(Ω) with compact
embeddings, by Aubin-Lions lemma applied to sequence (ym)m, there
exists y ∈ Lqloc(0, T ;W 1,q(Ω)) and a subsequence also denoted (ym)m
such that:

(3.1) ym −→ y in Lq(ε, T − ε;W 1,q(Ω)) as m −→∞,∀ε > 0.

Strong convergence of (ym)m in Lq(ε, T − ε;W 1,q(Ω)) and weak conver-
gence of (gm)m in Lq(Q) allow to pass to the limit in a weak formulation
of problem

(3.2)

{
Dty

m + Lym + L1ym + L0ym = gm, in (0, T )× Ω,
Bym = 0, on (0, T )× ∂Ω,

to conclude that y is solution to (1.13) corresponding to g. �

We focus now on proving source estimates for the linear parabolic
systems (1.13) with sources belonging to Gq,δ̃,G̃. We have to prove that

there exists C = C(q, δ̃, G̃) such that for g ∈ Gq,δ̃,G̃,

(3.3) ‖g‖Lq(Q) ≤ C‖y‖Lq(Qω).

We argue by contradiction. Suppose it were not true. Then there exists
a sequence (gm)m ⊂ Gq,δ̃,G̃ and corresponding solutions ym such that

(3.4) ‖gm‖Lq(Q) > m‖ym‖Lq(Qω).

With no loss of generality we may suppose that ‖gm‖Lq(Q) = 1 and

thus, up to a subsequence, gm ⇀ g weakly Lq(Q), for some g ∈ Lq(Q).
The above sequence of inequalities implies that:

(3.5) ym → 0 in Lq(Qω) as m→∞ and ‖ym‖Lq(Qω) bounded.

We observe now that the weak limit g of (gm)m is not zero. Indeed,
by hypothesis gm ∈ Gq,δ̃,G̃ and thus there exist a corresponding g̃m ∈ G̃
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such that ∫
Q

gmg̃m ≥ δ̃‖gm‖Lq(Q) = δ̃.

By further extracting a subsequence we may suppose that g̃m → g̃ ∈
G̃, g̃ 6= 0, strongly Lq

′
. By weak convergence of (gm)m in Lq(Q) and

strong convergence of (g̃m)m in Lq
′
(Q) we have that

∫
Q
gg̃ ≥ δ̃ > 0 and

thus g 6≡ 0.
The Lemma 2 says that, up to a subsequence, (ym)m converges

strongly to y in Lq(Q) and by (3.5) the limit y is zero in Qω.
Now, if we invoque the Maximum Principle as recalled in the Pre-

liminaries, since we have the hypothesis L0
ij ≤ 0 when i 6= j, then for

an initial datum y(0, ·) ≥ 0 and g ≥ 0, we have that y ≥ 0 in Q. Since
y vanishes in Qω and thus in interior points of Q it implies that y ≡ 0
in Q which would imply that g ≡ 0 in Q, which is a contradiction.

Remark 4. We used tha fact that Lq estimates in Theorem 3 remain
valid with uniform constant for a whole family of such linear systems
with fixed principal part and different first and zero order operators with
coefficients in the corresponding L1, L0 satisfying an uniform bound in
L∞(Q). This fact is due to the use of Carleman estimates in which
zero and first order terms may be absorbed in a uniform way if uniform
bounds on the coefficients in lower order terms are available. Observe
also that the Lq estimates remain valid for lower regularity of the coef-
ficients of L1, L0: bki , c

l
i ∈ L∞(Q).

4. L∞ estimates for the source term of the linear system.

The following remark, from [17], gives some consequences of the
growth propery for the sources considered firstly in the paper of O.Yu.
Imanuvilov and M.Yamamoto [13] (|Dtg(t, x)| ≤ c̃|g(θ, x)|) and says
basically that the norm of the sources in Q is controlled by the norm
of the sources in an arbitrary time neighborhood of the given moment
θ:

Remark 5. There exists a constant C1 = C1(q, c̃) > 0 such that for
g ∈ Gq,δ̃,c̃,G̃ defined in (1.7) we have that

(4.1)
1

C1

‖g(θ, ·)‖Lq(Ω) ≤ ‖g‖Lq(Q) ≤ C1‖g(θ, ·)‖Lq(Ω).

Moreover, if 0 < ε < min(θ, T − θ), there exists C2 = C2(ε, q, c̃) > 0
such that

(4.2)
1

C2

‖g‖Lq(Qε) ≤ ‖g‖Lq(Q) ≤ C2‖g‖Lq(Qε).

Indeed, since
∣∣∂g
∂t

(t, x)
∣∣ ≤ c̃|g(t, x)|, a.e.(t, x) ∈ Q, we have that

|g(t, x)| ≤ c̃

∫ t

θ

|gt(τ, x)|dτ + |g(θ, x)| ≤ [|t− θ|c̃+ 1]|g(θ, x)|
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=⇒ ‖g‖qLq(Q) ≤ T (c̃T + 1)q‖g(θ, ·)‖qLq(Ω)

=⇒ ‖g‖Lq(Q) ≤ T
1
q (c̃T + 1)‖g(θ, ·)‖Lq(Ω),

giving the second inequality in (4.1).
Observe now that

|g(θ, x)| ≤ c̃

∫ t

θ

|gt(τ, x)|dτ + |g(t, x)| ≤ c̃|t− θ||g(θ, x)|+ |g(t, x)|

and if we consider |t − θ| < δ < 1
2c̃

, we have that |g(θ, x)| ≤ 2|g(t, x)|
and thus integrating on (θ − δ, θ + δ)× Ω we find

2δ

∫
Ω

|g(θ, x)|qdx ≤ 2q
∫
|t−θ|<δ

∫
Ω

|g(τ, x)|qdxdτ.

Using this, we find for 0 < δ < min(θ − ε, T − (θ − ε))

‖g(θ, ·)‖Lq(Ω) ≤ C‖g‖Lq(Qε),

where C = C(ε, c̃, q). This combined with the second inequality in (4.1)
conclude both (4.1) and (4.2).

We consider now the systems for the sources g and the corresponding
systems obtained through derivation with respect to time:

(4.3)

 Dty + Ly + L1y + L0y = g, in (0, T )× Ω,
By = 0, on (0, T )× ∂Ω,
y(θ, ·) = yθ, in Ω.

with g ∈ Gq,c̃,δ̃,G̃ ∩ Cα(Q), and for z = Dty
(4.4) Dtz + Lz + L1z + L0z = gt − L̃y − L̃1y − L̃0y, in (0, T )× Ω,
Bz = 0, on (0, T )× ∂Ω,
z(θ, ·) = g(θ, ·)− Lyθ − L1yθ − L0yθ in Ω,

where

L̃y = (L̃iyi)
>
i=1,n, L̃iyi =

N∑
j,l=1

Dj(Dta
jl
i Dlyi), i = 1, n

L̃1y = (L̃1
i y)>i=1,n, L̃1

i yi =
∑

k=1,N,l=1,n

Dtb
kl
i Dkyl, i = 1, n(4.5)

L̃0y = (L̃0
i y)>i=1,n, L̃0

i yi =
N∑
l=1

Dtc
l
iyl, i = 1, n.

In order to estimate L∞ norm of g on (0, T ) × Ω in terms of the
solution y in (0, T )×ω and y(θ, ·) in Ω, we look at the third relation in
(4.4) and for fixed s1 > 0, we have that there exist constants denoted
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generically by C and depending on s1, λ, C = C(s1, λ), such that

(4.6)

∥∥g (θ, ·) es1α(θ,·)∥∥
L∞(Ω)

≤
∥∥g (θ, ·) es1α(θ,·)∥∥

Cα(Ω)

≤ C

[∥∥z (θ, ·) es1α(θ,·)∥∥
Cα(Ω)

+ ‖Lyθes1α‖Cα(Ω)

+
∥∥L1yθe

s1α(θ,·)∥∥
Cα(Ω)

+
∥∥L0yθe

s1α(θ,·)∥∥
Cα(Ω)

]
≤
∥∥z (θ, ·) es1α(θ,·)∥∥

Cα(Ω)
+ C(s1, λ) ‖y (θ, ·)‖C2+α(Ω) .

We have to estimate the term
∥∥z (θ, ·) es1α(θ,·)

∥∥
Cα(Ω)

. We consider q =
N+1
1−α , in order to use the Morrey embedding theorem:

(4.7)
∥∥z (θ, ·) es1α(θ,·)∥∥

Cα(Ω)
≤ ‖zes1α‖Cα(Q) ≤ C(α) ‖zes1α‖W 1,q(Q) .

Now, we estimate the last term above:

(4.8)

‖zes1α‖W 1,q(Q) =

= ‖zes1α‖Lq(Q) + ‖Dt(ze
s1α)‖Lq(Q) + ‖D(zes1α)‖Lq(Q)

≤ C
[
s1λ

∥∥ϕ2zes1α
∥∥
Lq(Q)

+ ‖Dtze
s1α‖Lq(Q) + ‖Dzes1α‖Lq(Q)

]
.

At this point using (3) we obtain that for s2 = s1
σ

, with σ > 1,

(4.9) s1λ
∥∥ϕ2zes1α

∥∥
Lq(Q)

≤ C ‖zes2α‖Lq(Q)

and going back to (4.8) we have,
(4.10)

‖zes1α‖W 1,q(Q) ≤ C
[
‖zes2α‖Lq(Q) + ‖Dtze

s2α‖Lq(Q) + ‖Dzes2α‖Lq(Q)

]
.

Using Carleman estimates with s3 = s2
σ

, σ > 1, we obtain

(4.11)

‖zes2α‖Lq(Q) + ‖Dtze
s2α‖Lq(Q) + ‖Dzes2α‖Lq(Q)

≤ C[‖zes3α‖Lq(Qω) + ‖gtes3α‖Lq(Q)

+ ‖L̃yes3α‖Lq(Q) + ‖L̃1yes3α‖Lq(Q) + ‖L̃0yes3α‖Lq(Q)]

In the following we treat each term in the right side of the above in-
equality, keeping in mind that

‖zes3α‖L2(Qω) = ‖Dtye
s3α‖L2(Qω) ≤ ‖Dtye

s3α‖Lq(Q)

We recall the estimates

(4.12) |L̃y| ≤ C(|D2y|+ |Dy|), |L̃1y| ≤ C|Dy|, |L̃0y| ≤ C|y|

for some constant C and y ∈ W 2,1
q (Q). We may apply now appropriate

Carleman estimates to system (4.3) with s4 = s3
σ

, σ > 1, and obtain:



16 STABILITY IN INVERSE SOURCE PROBLEMS

(4.13)
‖zes3α‖L2(Qω) + ‖L̃yes3α‖Lq(Q) + ‖L̃1yes3α‖Lq(Q) + ‖L̃0yes3α‖Lq(Q)] ≤
≤ C(‖ges4α‖Lq(Q) + ‖yes4α‖L2(Qω))

Going back to (4.8),
(4.14)
‖zes1α‖W 1,q(Q) ≤ C(‖ges4α‖Lq(Q) + ‖gtes3α‖Lq(Q) + ‖yes4α‖L2(Qω)).

Now we use the fact that g ∈ Gq,δ̃,c̃,G̃ and this gives

‖ges4α‖Lq(Q) + ‖gtes3α‖Lq(Q) ≤ C‖g(θ, ·)es4α‖Lq(Q)

and (4.6) becomes
(4.15)∥∥g (θ, ·) es1α(θ,·)∥∥

L∞(Ω)

≤ C(‖g(θ, ·)es4α‖Lq(Q) + ‖yes4α‖L2(Qω) + C(s1, λ) ‖y (θ, ·)‖C2+α(Ω)).

Now, since θ = T
2

and α attains its maximum in θ, we have that there
exists C = C(Ω) such that

(4.16) ‖g(θ, ·)es4α‖Lq(Q) ≤ ‖g(θ, ·)es4α(θ,·)‖Lq(Q) ≤ CT‖g(θ, ·)‖Lq(Ω).

Using the Remark 5 we get that there exists another constant C such
that

(4.17) ‖g(θ, ·)‖Lq(Ω) ≤ C‖g‖Lq(Q)

and using again Remark 5 and the Lq source estimate we have that

(4.18)
‖g‖L∞(Q) ≤ C

∥∥g (θ, ·) es1α(θ,·)∥∥
L∞(Ω)

≤ C(‖yes4α‖Lq(Qω) + C(s1, λ) ‖y (θ, ·)‖C2+α(Ω)).

5. Source estimates for the reaction-diffusion system

We return to the system (1.4). In this section, the solutions of the
nonlinear reaction-diffusion system are supposed to satisfy an apriori
bound in L∞(Q), and thus, for some M > 0, we assume y ∈ Fq,M .

Proof of Theorem 1 under condition (A)
In order to apply the results from the linear case and taking into

account the Remark 4, we consider the system that ”approximates”
the nonlinear reaction-diffusion system,

(5.1)

{
Dty + Ly + L1y + L0y = g, (0, T )× Ω,
By = 0, (0, T )× ∂Ω,

,

with

Dty = (Dtyi)
>
i=1,n , Ly = (Liyi)

>
i=1,n , L

1y =
(
L1
i yi
)>
i=1,n
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and the coupling is done through

L0y =
(
L0
i y
)>
i=1,n

, L0
i y =

n∑
j=1

γji yj

where

(5.2) γji (t, x) :=

∫ 1

0

∂fi(τy1, ..., τyj, ...τyn)

∂yj
dτ.

Since fi, i = 1, n are C∞(Rn) functions, f(0) = 0 and y = (yi)
>
i=1,n

∈
Fq,M , we have that there exists a constant m0 > 0 such that

|γji | ≤ m0,∀i, j = 1, n.

Moreover, the above conditions and the hypothesis (H1) on the nonlin-
earities allow to apply the results from the linear case. In this context,
if we consider sources g form Gq,δ̃,G̃, for some δ̃ > 0 we can apply
the result from Theorem 3 concerning the Lq estimates to the above
linear system to obtain the Lq estimates for the source of the reaction-
diffusion system.

Proof of Theorem 1 under condition (B).
Consider now the reaction diffusion system under sources g from
Gq,δ̃,G̃ with the hypothesis from condition (B) satisfied. We want to
prove that there exists a constant C > 0 such that

‖g‖Lq(Q) ≤ C‖y‖Lq(Qω).

We reason by contradiction. Suppose that there exists a sequence
(gm)m ∈ Gq,δ̃,G̃ and the corresponding solutions (ym)m ∈ Fq,M such
that

(5.3) ‖gm‖Lq(Q) > m‖ym‖Lq(Qω),∀m > 0.

We will treat the cases when ‖gm‖Lq(Q) −→∞, ‖gm‖Lq(Q) −→ 0 and
when ‖gm‖Lq(Q) bounded but ‖gm‖Lq(Q) 6−→ 0.

Case 1. If ‖gm‖Lq(Q) −→ ∞, we consider the linear system by the

sequence (wm)m, wm = ym

‖gm‖Lq(Q)
:

(5.4)
Dtw

m + Lwm + L1wm = hm − 1

‖gm‖Lq(Q)

f(ym), (0, T )× Ω

Bwm = 0, (0, T )× ∂Ω,

where hm := 1
‖gm‖Lq(Q)

gm.

By Lemma 2 applied to the pair (wm, hm) we have that there exist
h ∈ Lq(Q) and w ∈ Lqloc(0, T ;W 1,q(Ω)) such that, up to subsequences
denoted in the same manner, we have

(5.5) hm ⇀ h weakly in Lq(Q)
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and

(5.6) wm −→ w strongly in Lqloc(0, T ;W 1,q(Ω))

and h, w verify the problem

(5.7)
Dtw + Lw + L1w = h, (0, T )× Ω

Bw = 0, (0, T )× ∂Ω.

By the hypothesis 5.3, we have that the limit w satisfies

w = 0 in Qω.

Moreover, observe that h 6≡ 0 in Q. Indeed, by hypotheses gm ∈ Gq,δ̃,G̃
we have that hm ∈ Gq,δ̃,G̃ and thus there exist a corresponding g̃m ∈ G̃
such that ∫

Q

hmg̃m ≥ δ̃‖hm‖Lq(Q) = δ̃.

Extracting a subsequence we may suppose that g̃m → g̃ ∈ G̃, g̃ 6=
0, strongly Lq

′
. By weak convergence of (hm)m in Lq(Q) and strong

convergence of (g̃m)m in Lq
′
(Q) we have that

∫
Q
hg̃ ≥ δ̃ > 0 and thus

h 6≡ 0. Then, by the Maximum principle applied to the system (5.7),
we have that w ≥ 0 in Q. Since w = 0 in Qω, it follows that w ≡ 0 in
Q, which implies that h ≡ 0 in Q, which is false.

Case 2. If ‖gm‖Lq(Q) bounded but ‖gm‖Lq(Q) −→ µ 6= 0 we have that
up to a subsequence, gm ⇀ g weakly in Lq(Q) and g 6≡ 0 in Q.

The sequences (gm)m and (ym)m satisfy the problems

(5.8)

{
Dty

m + Lym + L1ym = gm − f(ym), in (0, T )× Ω,
Bym = 0, on (0, T )× ∂Ω.

Since (ym)m ⊂ Fq,M , we have that (ym)m is bounded in L∞(Q) and,
since f is smooth, we have for some K > 0 a bound in L∞ for the term
‖f(ym)‖L∞(Q) ≤ K,m ∈ N. By Carleman estimates we have that for
0 < ε < min(θ, T − θ), there exists a constant C = C(ε) > 0 such that

‖ym‖W 2,1
q (Qε) ≤ C(‖gm‖Lq(Q) + ‖ym‖Lq(Qω) +K),

where Qε is the cylinder Qε = (ε, T − ε) × Ω. By Aubin-Lions lemma
applied to sequence (ym)m, there exists y ∈ Lqloc(0, T ;W 1,q(Ω)) such
that up to subsequences of ym

(5.9) ym −→ y in Lq(ε, T − ε;W 1,q(Ω)) as m −→∞,∀ε > 0.

Strong convergence of (ym)m in Lq(ε, T − ε;W 1,q(Ω)) and weak conver-
gence of (gm)m in Lq(Q) allow to pass to the limit in the variational
formulation of problem to obtain that y is the solution of the nonlinear
system with source g:

(5.10)
Dty + Ly + L1y = g − f(y), (0, T )× Ω

By = 0, (0, T )× ∂Ω.
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Moreover, by (5.3), y ≡ 0 in ω × (0, T ). By hypothesis (H2), invoking
the invariance principle from [16] we get y ≥ 0 in (ε, T − ε)× Ω for all
ε > 0, and consequently in whole Q.

Now, since q > N+2
2

, the Sobolev embedding gives that W 2,1
q (Q) ⊂

Cα(Q) and so y is Hölder continuous in Q for some α ∈ (0, 1). This
implies that y is uniformly continuous in Q and so there exists δ0 inde-
pendent of ω such that in each neighborhood (0, T ) × [(ω + Bδ0) ∩ Ω]
we have that y remains in the domain of quasimonotonicity of f . In
this slightly larger domain we consider again the ”approximate” linear
system (5.1)

(5.11)

{
Dty + Ly + L1y + L0y = g, (0, T )× Ω,
By = 0, (0, T )× ∂Ω,

,

and we use the same method (based on the maximum principle for
linear coupled systems, [18]) as when working under the condition (A)
to obtain that y ≡ 0 in (0, T )× [(ω + Bδ0) ∩ Ω]; consequently we may
extend the vanishing property to the whole cylinder (0, T ) × Ω. This
would imply that g ≡ 0 in Q, which is a contradiction.

Case 3. When ‖gm‖Lq(Q) → 0, we consider the linear system

(5.12)
Dty

m + Lym + L1ym + L0
my

m = gm, (0, T )× Ω

Bym = 0, (0, T )× ∂Ω,

where

L0
my

m =
(
L0
i,my

m
)>
i=1,n

, L0
i,my

m =
n∑
j=1

γj,mi ymj

with

(5.13) γj,mi (t, x) :=

∫ 1

0

∂fi(τy
m
1 , ..., τy

m
j , ...τy

m
n )

∂ymj
dτ.

Along with (5.12) we consider the system verified by wm := 1
‖gm‖Lq(Q)

ym

(5.14)
Dtw

m + Lwm + L1wm + L0
mw

m = hm, (0, T )× Ω

Bwm = 0, (0, T )× ∂Ω,

where hm := 1
‖gm‖Lq(Q)

gm. One may observe that ‖hm‖Lq(Q) = 1 and

so there exists a subsequence denoted also (hm)m and h ∈ Lq(Q) such
that hm ⇀ h weakly in Lq(Q). Looking at the properties of the set of
sources, one may see that h 6≡ 0 in Q.

We would like to pass to limit in the above system. Since (ym)m is
in Fq,M , we have that the entries of L0

m are bounded in L∞(Q), and up
to a subsequence,

γj,mi
w∗
⇀ γji weakly∗ in L∞.
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Using the hypothesis (5.3) and the global Carleman estimate for the
system (5.12) we get that (wm)m is bounded in W 2,1

q (Q). By Aubin-

Lions lemma, we obtain that there exists w ∈ Lqloc(0, T ;W 1,q(Ω)) such
that, up to a subsequence, we have

(5.15) wm −→ w in Lqloc(0, T ;W 1,q(Ω)).

At this point we can pass to the limit in the variational formulation of
(5.12) and find that w verifies the equation with source h in Q:

(5.16)
Dtw + Lw + L1w + L0w = h, (0, T )× Ω

Bw = 0, (0, T )× ∂Ω,

where the coefficients γji of L0 are the weak* limits in L∞(Q) of the
sequences of corresponding coefficients of L0

m. Moreover, again by hy-
pothesis 5.3, we have that the limit w satisfies

w = 0 in Qω.

We work in hypothesis (B), so q > N+2
2

and the Sobolev embedding
W 2,1
q (Q) ⊂ Cα(Q) for some α ∈ (0, 1) together with a Carleman esti-

mate for the solution ym of the (5.12) gives that

‖ym‖L∞(Qε) −→ 0, ∀ε > 0.

This observation alows to place ym in the ε0-neighbourhood, Vε0(0)
where (H1) holds, when (t, x) ∈ Qε. Consequently, γj,mi ≤ 0 in Qε for

m big enough and passing to the limit we find γji ≤ 0 in Q. We may
now apply the maximum principle for the linear parabolic system, find
that w ≡ 0 in Q and thus h ≡ 0 in Q which is a contradiction.

Proof of Theorem 2
Concerning L∞ source estimates, we consider the reaction-diffusion

system with a given observation yθ at the instant θ ∈ (0, T ) ,

(5.17)

 Dty + Ly + L1y + f(y) = g, (0, T )× Ω,
By = 0, (0, T )× ∂Ω,
y(θ, ·) = yθ in Ω.

From the above system, using the mean value theorem, we obtain
the linear system that ”approximates” the nonlinear reaction-diffusion
system, (5.1):

(5.18)

 Dty + Ly + L1y + L0y = g, (0, T )× Ω,
By = 0, (0, T )× ∂Ω,
y(θ, ·) = yθ in Ω,

,

where L0y = (L0
i y)>, L0

i y =
∑n

j=1 γ
j
i yj, γ

j
i defined in (5.2).
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From (5.17) we obtain through derivation with respect to time a
linear system for the variable z = Dty:
(5.19) Dtz + Lz + L1z +Df(y)z = Dtg − L̃y − L̃1y, (0, T )× Ω,

Bz = 0, (0, T )× ∂Ω,
z(θ, ·) = g(θ, ·)− Lyθ − L1yθ − L0yθ in Ω,

where L̃, L̃1 are given in (4.5).

Remark 6. We want to apply the same procedure as in the case of
linear systems in §4 , based on combining Lq-Carleman estimates for
y and z = Dty. There we used appropriate Carleman estimates for
the linear systems satisfied by z and y, which are in this section rep-
resented by (5.18) and (5.19). In the present case we have in fact
families of such linear systems and the Carleman estimates hold with
uniform constants if L∞ bounds on the coefficients of zero and first
order terms are assumed. In fact we have families of linear systems
for y, z with variable zero order terms, with coefficients γji and, respec-
tively, Df(y), which are uniformly bounded in L∞(Q) as a consequence
of the assumption y ∈ Fq,M .

We start with the linear system (5.19) and we treat it like we did
with (4.4). From the last equation in (5.19), for s1 > 0, we obtain that
there exists C(s1, λ) > 0 such that

(5.20)

∥∥g (θ, ·) es1α(θ,·)∥∥
L∞(Ω)

≤
∥∥g (θ, ·) es1α(θ,·)∥∥

Cα(Ω)

≤
∥∥z (θ, ·) es1α(θ,·)∥∥

Cα(Ω)
+ C(s1, λ) ‖y (θ, ·)‖C2+α(Ω) .

To estimate the term
∥∥z (θ, ·) es1α(θ,·)

∥∥
Cα(Ω)

we use the Morrey embed-

ding theorem:

(5.21)
∥∥z (θ, ·) es1α(θ,·)∥∥

Cα(Ω)
≤ ‖zes1α‖Cα(Q) ≤ C(α) ‖zes1α‖W 1,q(Q) .

For the term ‖zes1α‖W 1,q(Q) we apply a Carleman inequality to system

(5.19),

(5.22)

‖zes2α‖Lq(Q) + ‖Dtze
s2α‖Lq(Q) + ‖Dzes2α‖Lq(Q)

≤ C[‖zes3α‖Lq(Qω) + ‖gtes3α‖Lq(Q)

+ ‖L̃yes3α‖Lq(Q) + ‖L̃1yes3α‖Lq(Q) + ‖L̃0yes3α‖Lq(Q)],

where s2 = s1/σ, s3 = s2/σ for fixed σ > 1 and the constant in the
above estimate C = C(s1, λ, σ).
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At this point we couple the two systems (5.18) and (5.19), by using
a Carleman estimate for (5.18), to bound the weighted terms in y:
(5.23)
‖Dtye

s3α‖L2(Qω) + ‖L̃yes3α‖Lq(Q) + ‖L̃1yes3α‖Lq(Q) + ‖L̃0yes3α‖Lq(Q) ≤
≤ C(‖ges4α‖Lq(Q) + ‖yes4α‖Lq(Qω)),

where C = C(s1, λ, σ), s4 = s3/σ. We use that g ∈ Gq,δ̃,c̃,G̃ to be able
to write

‖ges4α‖Lq(Q) + ‖gtes3α‖Lq(Q) ≤ C‖g(θ, ·)es4α‖Lq(Q)

and gathering the estimates above, using Remark 5 and the fact that
α attains its maximum in θ = T

2
, we obtain

(5.24)
‖g‖L∞(Q) ≤ C(s1, λ, c̃)

∥∥g (θ, ·) es1α(θ,·)∥∥
L∞(Ω)

≤ C(‖g‖Lq(Q) + ‖yes4α‖Lq(Qω) + C(s1, λ) ‖y (θ, ·)‖C2+α(Ω)).

At this point we use the Lq source estimates obtained for g under
conditions (A) or (B) to properly bound the term ‖g‖Lq(Q) from the
right-hand side and to get the desired L∞ source estimate (1.12), for
the nonlinear reaction diffusion system (1.4).
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