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Abstract: In this paper we study stability issues for vectorial directional minima of sets and set-valued
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stability of e¢ ciency and preservation of criticality under perturbations.
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1 Introduction

In this paper we study some stability properties of directional Pareto minima. On the one hand,
our study is a natural continuation of the investigation of the notions introduced and studied from
the perspective of optimality conditions in [3], [7], and [2], and, on the other hand, our e¤ort is
partially inspired by several stability issues treated in [8] and [5]. More precisely, we consider the
minima for sets and set-valued maps from a point of view that considers some special directions
starting from the underlying minimum point instead of the classical approach that considers all the
directions. This is motivated by some special classes of vector optimization problems such location
problems (see [10]) and therefore, in view of possible practical applications, we are interested in a
careful analysis of several types of directional solutions (strong, weak, approximate) in the sense
of their stability under perturbations. Because of the special structure in terms of the constraints
of the problems we consider, which cover, in particular, the classical case, the results we get
generalize some similar assertions in literature. Furthermore, this very structure of the problems
under consideration raise new technical issues that we try to solve without imposing too heavy
assumptions.

In the case of directional Pareto minima for sets we consider only the problem of stability the
e¢ ciency points and, as in the general pattern often encountered in literature, such results need
interiority assumptions. We discuss here such conditions from two perspectives: the nonemptiness
of the topological interior of the ordering cone and a concept of enlargement (dilating) for a set of
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directions studied in [2], which allows to include the cone of constraint directions in the interior of
a cone of directions.

For the case of vector optimization problems with set-valued maps, inspired by the results from
the case of sets in terms of interiority assumptions, we are dealing with two types of results: stability
of minimality and the preservation of criticality. In the results concerning the stability of minimality
one takes a convergent sequence of minima for perturbed maps and one looks after the minimality
of the limit for the initial, unperturbed map. In contrast, in the results concerning the preservation
of the criticality one looks not necessary at the e¢ ciency of the mentioned limit, but to the fact
that this point is critical (in a generalized sense). Of course, criticality is weaker than e¢ ciency
and the second type of results allow us to relax some hypotheses and still retaining a valuable
conclusion since it is known that even for algorithms the points of interest are the critical points.
Nevertheless, in both kinds of results, we avoid some strong assumptions imposed in literature and
we replace them with some metric properties.

We detail the organization of the paper and in this presentation we emphasize several aspects
concerning the methods we employ in our work and the obtained results. The second section deals
with notation and the main concept which are the starting points of our investigation. Then,
we divide our work into two main parts. In the �rst part, which coincides with Section 3, we
consider four concepts of directional Pareto minima for sets (whence we work on a single normed
vector space) and we derive stability results for minima but as well for the constraints sets. One
important ingredient is an enlargement procedure for which the main properties are discussed in [2].
The second part, that is Section 4, deals with vector optimization problems with set-valued maps
and, naturally, two normed vector spaces are involved. We consider then a sequence of perturbed
set-valued maps and we study conditions to ensure that a sequence of directional minima for these
mappings converges to a minimum point or a critical point for the initial mapping. We devise
several weak Lipschitz-type conditions that are enough to replace the role played in some works in
literature by conditions involving the convergence of an intersection of sets. Furthermore, in the
discussion concerning criticality, several methods issued from variational analysis and generalized
di¤erentiation calculus are employed. We illustrate our main results in both of the main sections of
the paper by detailed examples. The paper ends with some concluding remarks where we emphasize
some possible extension of our results.

2 Notation and preliminaries

Throughout this paper, we assume that X and Y are normed vector spaces over the real �eld R
and on a product of normed vector spaces we consider the sum norm, unless otherwise stated. By
B (x; ") we denote the open ball with center x and radius " > 0 and by BX the open unit ball of
X: In the same manner, D(x; ") and DX denote the corresponding closed balls. The symbol SX
stands for the unit sphere of X: By X� we denote the topological dual of X, while w� stands for
the weak� topology on X�:

Let F : X � Y be a set-valued map. As usual, the graph of F is

GrF := f(x; y) 2 X � Y j y 2 F (x)g ;

and the inverse of F is the set-valued map F�1 : Y � X given by (y; x) 2 GrF�1 i¤ (x; y) 2 GrF .
Consider a nonempty subset A of X: Then the image of A through F is

F (A) := fy 2 Y j 9x 2 A : y 2 F (x)g =
[
x2A

F (x) :
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and the distance function associated to A is dA : X ! R given by

dA (x) = d(x;A) := inf
a2A

kx� ak :

The topological interior, topological closure, the convex hull, and conic hull of A are denoted,
respectively, by intA; clA; convA; coneA. The negative polar of A is

A� := fx� 2 X� j x� (a) � 0;8a 2 Ag :

We will work on two di¤erent settings.
Firstly, we are going to consider minimality for sets in the vectorial (Pareto) sense and this

means to work only in one space, namely X: Therefore, let K � X be a proper (that is, K 6= f0g;
K 6= X) convex and pointed cone. The positive dual cone of K is

K+ := �K� = fx� 2 X� j x� (x) � 0;8x 2 Kg

and it is well-known that K induces a partial order relation �K on X by x1 �K x2 i¤ x2�x1 2 K:
If intK 6= ;; one can consider as well the strict partial order relation <K by x1 <K x2 i¤ x2�x1 2
intK:

We recall the classical concepts. For a nonempty set A � X an element x 2 A is said to be a
local Pareto minimum of A if there exists a neighborhood U of x such that x is a minimal element
of A \ U with respect to the order given by K and this means

(A \ U � x) \ �K = f0g :

If the cone K is solid (i.e., intK 6= ;), x is said to be local weak Pareto minimum of A if there
exists a neighborhood U of x such that x is a minimal element of A \ U with respect to the strict
order given by K; that is

(A \ U � x) \ � intK = ;:

Secondly, we will deal with vectorial problems with set-valued objectives and for this we consider
a pointed convex cone Q on Y which, as K before, characterizes a (strict) partial order relation on
Y:

Take a set-valued mapping F : X � Y , and let us consider the following geometrically con-
strained optimization problem with set-valued objective:

(P ) minimize F (x); subject to x 2 A;

where A � X is a closed nonempty set.
The minimality is understood in the vectorial or Pareto sense as follows.
A point (x; y) 2 GrF \ (A � Y ) is a local Pareto minimum point for F on A if there exists a

neighborhood U of x such that x is a Pareto minimum for F (U \A); that is

(F (U \A)� y) \ �Q = f0g : (2.1)

Suppose that intQ 6= ;. Similarly, the point (x; y) 2 GrF \(A�Y ) is a local weak Pareto minimum
point for F on A if there exists a neighborhood U of x such that x is a weak Pareto minimum of
F (U \A); that is

(F (U \A)� y) \ � intQ = ;: (2.2)
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The vectorial notions described by (2.1) and (2.2) cover as well the situation where f is a
function (in which case y = f(x) will not be mentioned) and the situation of classical local minima
in the scalar case (in which case we drop the label "Pareto").

Moreover, when U = X we have the global minimality and we simply drop the word "local".
In fact, this is the setting in which we develop the concepts under study. We will brie�y refer again
to the local case in the last section of the paper.

In fact, we will deal with some generalizations introduced in [3] of the concepts de�ned above
and as mentioned, we do this in the next two sections.

3 Convergences of minima for sets

Besides the proper convex pointed and solid cone K � X; we consider as well a nonempty closed
set L � SX . Consider the next concepts.

De�nition 3.1 Let A � X be a nonempty set c 2 K n f0g and " > 0; and x 2 A. One says that:
(i) x is a directional Pareto minimum point for A with respect to L if

(A� x) \ coneL \ �K = f0g ; (3.1)

(ii) x is a weak directional Pareto minimum point for A with respect to L if

(A� x) \ coneL \ � intK = ;; (3.2)

(iii) x is an ("; c)�directional Pareto minimum point of A with respect to K if

(A� x+ "c) \ coneL \ �K = ;;

(iv) x is an ("; c)�weak directional Pareto minimum point of A with respect to K if

(A� x+ "c) \ coneL \ � intK = ;:

The concepts de�ned by (i) and (iii) are relevant only if coneL \ �K 6= f0g, while for (ii)
and (iv) it is important to have coneL \ � intK 6= ;. Of course, (i) and (ii) above generalize the
concept of global (weak) Pareto minimality. Furthermore (iii) and (iv) are directional generalization
of approximate (weak) Pareto minimality (see [1], for instance).

Remark 3.2 At a �rst look, in this setting where only the space X is considered, the notions
of directional minimality de�ned above seem to be in fact minimality for the order induced by
�K\coneL: However, there are some natural reasons to consider these notions and some di¤erences
as well with respect to this simple reduction. First of all, one idea behind these concepts is that in
one given (particular) problem the order is �xed by the cone K and then, if the minimality of a point
with respect to that order is not veri�ed, then we look at a set of directions that can be selected such
that a partial form of minimality is ful�lled. On the other hand, for the weak counterparts, it is
clear that �K \ coneL is not solid, in general, and, even so, coneL\� intK 6= int (�K \ coneL) :

We denote the set of directional Pareto minimum points forA with respect to L byDirMin (A;L;K) :
Similarly, for the other three concepts in the previous de�nition we adopt the notationWDirMin (A;L;K) ;
("; c)�DirMin (A;L;K) and ("; c)�WDirMin (A;L;K) ; respectively.
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Remark 3.3 It is clear that if K is solid, then,

DirMin (A;L;K) �WDirMin (A;L;K) ;

and for every " > 0 and for every c 2 K n f0g ;

WDirMin (A;L;K) � ("; c)�WDirMin (A;L;K)
("; c)�DirMin (A;L;K) � ("; c)�WDirMin (A;L;K) :

Notice that in these inclusions we take into account that K+(0;1) c � Knf0g and intK+[0;1)c �
intK:

Example 3.4 The sets of directional minima introduced in De�nition 3.1 are now illustrated with
the following examples. We consider X = R2;K = cone f(0; 1) ; (1;�1)g and L consist of the points
(x1; x2) ; on the unit circle, that lie in the third quadrant, together with the points on the axes.
Let � > 0 and A be the set�

(x1; 0) 2 R2 j x1 2 [��; 0)
	
[
n
(x1; x2) 2 R2 j (x1 � 1)2 + x22 � 1

o
:

Observe that coneL \ �K = coneL and coneL \ � intK =
�
(x1; x2) 2 R2 j x1 � 0; x2 < 0

	
.

Then we obtain that

DirMin (A;L;K) = f(��; 0)g [
�
(x1;�y1) 2 R2 j x1 2 (0; 1]

	
= WDirMin (A;L;K) ;

where y1 =
q
1� (x1 � 1)2.

It is worth mentioning for instance that the set of directional Pareto minimum points isn�t
closed, even in the presence of closeness of the set A.

In what follows we consider � to be small enough. Let " > 0 such that � < " < 2� and
c = (1; 0). We illustrate the geometry of approximate directional Pareto minima with the help of
the �gure below.

Thus ("; c) �WDirMin (A;L;K) is the union of the segment from P1 to (0; 0) and the plane
region bounded by the path P2P3P4P5P2 except the line segment P3P4 from which we remove the
point P4. On the other hand, the only points that ensure the nonemptiness of the set

(A� x+ "c) \ coneL \ �K

are in ("; c)�WDirMin (A;L;K) ; except those of the path P2P3P4P5.

Let A; (An)n2N be nonempty subsets of X. We use the following notation:

Liminf An = fx 2 X j 9 (xn) ; xn 2 An;8n 2 N : xn ! xg

and
LimsupAn = fx 2 X j 9 (nk) ;9 (xnk) ; xnk 2 Ank ;8k 2 N : xnk ! xg

De�nition 3.5 One says that A is the Painlevé-Kuratowski limit of (An) and notes An
P�K! A if

the next conditions hold:
A � Liminf An and LimsupAn � A:

Moreover, if the �rst of the above relations holds one writes An
P�K�! A; while if the second holds

one writes An
P�K+! A:
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From now on we suppose that A; (An)n2N are closed, unless otherwise stated.
We start with a lemma.

Lemma 3.6 Suppose that X is a normed vector space. Let ; 6= L be a closed subset of SX and

(Ln)n2N be a sequence of nonempty and closed sets of SX . If Ln
P�K�! L then coneLn

P�K�! coneL

and if Ln
P�K+! L, then coneLn

P�K+! coneL.

Proof. For the �rst part, take a 2 coneL:We have to �nd a sequence in coneLn which approximate
a. By de�nition of conic hull of L, there is (�; `) 2 [0;1) � L such that a = �`. Since, by the
assumption, ` 2 L � Liminf

n!+1
Ln, then for all n there is `n 2 Ln such that `n ! `. Hence the

sequence (�`n)n2N is convergent to �` and since �`n 2 coneLn for all n; the conclusion follows.
For the second part, we have to prove that

Limsup
n!+1

coneLn � coneL:

Let x 2 Limsup
n!+1

coneLn. If x = 0 then clearly x 2 coneL: Suppose that x 6= 0: Based on

the characterization with sequences of Limsup set, this means that there exists a subsequence
(nk)k2N � N and (ank)k2N with ank 2 coneLnk for every k 2 N such that ank ! x. Then, for
all k 2 N, there is (�k; `k) � [0;1) � Lnk such that ank = �k`k, for all k. But kakk = �k for
all k; so (�k) is convergent to kxk > 0: Moreover, for k large enough, �k 6= 0: This means that
`k = (�k)

�1 �k`k ! kxk�1 x; so kxk�1 x 2 Limsup
n!+1

Ln � L; and yields x 2 coneL: �

Proposition 3.7 Let (An)n2N be a sequence of nonempty and closed subsets of X, (Ln)n2N be a
sequence of nonempty and closed subsets of SX . Consider (xn)n2N be a sequence such that xn 2 An
for all n 2 N and xn ! x 2 A. If An

P�K+! A and Ln
P�K+! L for some A � X and L � SX ; then

An \ [xn + coneLn]
P�K+! A \ (x+ coneL) :

Proof. We have to show that

Limsup
n!+1

(An \ (xn + coneLn)) � A \ (x+ coneL) :

We start by �xing an arbitrary element x 2 Limsup
n!+1

(An \ [xn + coneLn]). Then there exist a

subsequence (nk)k2N and unk 2 Ank \ (xnk + coneLnk) for every k 2 N such that unk ! x. From
hypothesis we have that LimsupAn � A, hence x 2 A. But, for all k

unk � xnk 2 coneLnk ;

whence x� x 2 Limsup
n!+1

Ln and by Lemma 3.6, x� x 2 coneL: Therefore, x 2 A \ (x+ coneL).�

In the paper [2] a notion of enlargement that seems to be well adapted to the case of a cone
generated by a given set of directions was introduced. We recall here this construction and its main
properties.

Take L � SX and � > 0: De�ne

L� := fx 2 SX j d(x; L) � �g;

and we are looking for the cone generated by L� with respect to the cone generated by L: The next
result is proved in [2].
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Proposition 3.8 Let ; 6= L � SX and � > 0: Then:
(i) L is closed if and only if coneL is closed;
(ii) L� is closed;
(iii) coneLnf0g � int coneL�;
(iv) if L is closed, then \

�>0

L� = L and
\
�>0

coneL� = coneL:

Remark 3.9 As seen in the items (iii) and (iv); the cone generated by L� is a solid enlargement
of coneL:

Using this type of enlargement we get some convergence results.

Proposition 3.10 Let (An)n2N be a sequence of nonempty and closed subsets of X, A � X a

closed set, L a nonempty and closed subset of SX , " > 0 and c 2 Kn f0g. Suppose that An
P�K+! A.

Then for every � > 0

Limsup
n!+1

("; c)�WDirMin (An; L;K) � ("; c)�WDirMin (A;L�;K) :

Proof. Take an element x 2 Limsup
n!+1

("; c) �WDirMin (An; L;K). We know that there exists a

strictly increasing sequence (nk)k2N and unk 2WDirMin (Ank ; L;K) such that unk ! x: In partic-
ular, x 2 Limsup

n!+1
An � A. Suppose, by way of contradiction, that x =2 ("; c)�WDirMin (A;L�;K),

i.e.,
(A� x+ "c) \ coneL \ � intK 6= ;:

Therefore there is an element v 2 � intK \ coneL such that v 2 A� x+ "c. Then for all k;

0 2 A� x� v + "c = A� unk + "c+ unk � x� v:

Notice that unk�x! 0: On the one hand �v 2 intK, so for k large enough, unk�x�v 2 intK: On
the other hand, v 2 coneLn f0g whence v 2 int coneL�: Again for all large k; unk�x�v 2 � coneL�
which means that we always have k such that

(A� unk + "c) \ coneL� \ � intK 6= ;:

This is a contradiction and we infer that x is a ("; c)�weak directional Pareto minimum point of
A with respect to L�. �

Proposition 3.11 Let (An)n2N be a sequence of nonempty and closed subsets of X and A � X be

a nonempty closed set. Suppose that An
P�K�! A, let x 2 A and (xn)n2N a sequence of elements

such that xn 2 An for all n and xn ! x: Then for all L � SX and � > 0;

A \ (x+ coneL) � Liminf
n!+1

(An \ (xn + coneL�)) :

7



Proof. Let x 2 A \ (x+ coneL) : If x = x; then clearly x belongs to the right-hand side of the

relation in the conclusion. Suppose that x 6= x. Since An
P�K�! A one can �nd for every n 2 N an

element un 2 An such that un ! x. Moreover x� x = �`, for some � > 0 and ` 2 L. Observe that

un � xn
kx� xk !

x� x
kx� xk = ` 2 L:

According to the Proposition 3.8, we have for every n large enough

un � xn
kx� xk 2 L�;

whence un � xn 2 coneL� for all n large enough. The conclusion follows. �

Proposition 3.12 Suppose that intK 6= ;. Let A � X be a closed set and take L � SX ; c 2 Knf0g
and � > 0.

(i) Let " > 0 and (�n)n2N � (0; ") a sequence convergent to ". If (An) is a sequence of closed
subsets of X with An

P�K�! A; then

Limsup
n!+1

(�n; c)�WDirMin (An; L�;K) � ("; c)�WDirMin (A;L;K) :

(ii) Consider ("n) � (0;+1) ; "n ! 0. Then one has

Limsup
n!+1

("n; c)�WDirMin (A;L�;K) �WDirMin (A;L;K) :

Proof. (i) Take x arbitrarily from Limsup
n!+1

(�; c) �WDirMin (An; L�;K). Then there exist a sub-

sequence (nk)k2N of the sequence of natural numbers and unk 2 (�; c) �WDirMin (An; L�;K) for
every k 2 N such that unk ! x 2 A. Suppose that x is not an ("; c)�weak directional Pareto
minimum point of A with respect to L: This means that there exists a 2 A such that

a� x+ "c 2 coneL \ � intK:

Since 0 62 coneL \ � intK, then there exists � > 0 and ` 2 L such that a � x + "c = �`. By the
assumption An

P�K�! A, we can �nd a sequence (an)n2N with an 2 An for all n and an ! a. Then,

ank � unk + �nkc = a� x+ "c+ (ank � a)� (unk � x) + (�nk � ") c

is, for k large enough, an element from � intK.
In order to obtain a contradiction it is su¢ cient to prove that ank � unk + �nkc belongs to

coneL�, again for every k large enough. Since �nk ! ", we obtain that

ank � unk + �nkc
kank � unk + �nkck

! a� x+ "c
ka� x+ "ck 2 L:

According to the Proposition 3.8, we have for every k large enough

ank � unk + �nkc
kank � unk + �nkck

2 L�;

and hence ank � unk + �nkc 2 coneL� for all k large enough, which is against the minimality of a.
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(ii) Take x 2 Limsup
n!+1

("n; c) �WDirMin (A;L�;K) and suppose that x =2 WDirMin (A;L;K).
Then, according to the de�nition, one has that a� x 2 coneL \ � intK, for some a 2 A. Whence
there exist � > 0 and ` 2 L such that a� x = �`. For k large enough

a� x+ "nc
ka� x+ "nck

! a� x
ka� xk = `:

Since, moreover, "n ! 0; we obtain that for k large enough, a� x+ "nc 2 coneL \ � intK which
is a contradiction. Therefore, the conclusion is true. �

Remark 3.13 Notice that the results in this section generalize several results from [5] which, prac-
tically, correspond to the case L = SX :

4 Stability of e¢ ciency and criticality for vector optimization prob-
lems

Next, we consider the notation used for describing the problem (P ) above and we present some
directional concepts of e¢ ciency.

De�nition 4.1 Let " > 0; c 2 Qn f0g ; ; 6= L � SX ; ; 6= A � X; A closed, and (x; y) 2
GrF \ (A� Y ) :

(i) (x; y) is said to be a directional minimum point for F on A with respect to L, and we denote
(x; y) 2 DirMin (F;A;L;Q), if

(F (A \ [x+ coneL])� y) \ �Q = f0g :

(ii) If Q is solid, (x; y) is said to be a weak directional minimum point for F on A with respect
to L, and we denote (x; y) 2WDirMin (F;A;L;Q), if

(F (A \ [x+ coneL])� y) \ � intQ = ;:

(iii) (x; y) is said to be an ("; c)�directional minimum point for F on A with respect to L, and
we denote (x; y) 2 ("; c)�WDirMin (F;A;L;Q), if

(F (A \ [x+ coneL]) + "c� y) \ �Q = ;:

(iv) If Q is solid, (x; y) is said to be an ("; c)�weak directional minimum point for F on A with
respect to L, and we denote (x; y) 2 ("; c)�WDirMin (F;A;L;Q), if

(F (A \ [x+ coneL]) + "c� y) \ � intQ = ;:

Once again, (i) and (ii) are directional generalizations of the global Pareto solutions (see Section
2), while (iii) and (iv) consider approximate solutions.

Notice that in the setting of vector optimization problems with objective mappings that we
consider in this section the sets L and Q lay in di¤erent spaces.

In what follows, we present some results about the stability of the solutions with respect to the
perturbations of the multifunction F or the perturbations of the set A.
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Theorem 4.2 Let � > 0 and (x; y) 2 GrF . Consider (An)n2N a sequence of nonempty and
closed sets, A a nonempty and closed set, (xn; yn)n2N a sequence of elements such that (xn; yn) 2
WDirMin (Fn; An; L�; Q) for all n 2 N. Suppose that:

(i) GrFn
P�K�! GrF and An

P�K�! A;
(ii) For every (x; y) 2 GrF , there exist a neighborhood V of y such that for all x0n ! x and

x00n ! x; there exists (�n) � (0;+1) with �n kx0n � x00nk ! 0 for n! +1, with

Fn
�
x0n
�
\ V � Fn

�
x00n
�
+ �n



x0n � x00n

DY ;
for all n large enough;

(iii) the sequence (xn; yn)n2N is convergent to (x; y) 2 GrF \ (A� Y ).
Then (x; y) 2WDirMin (F;A;L;Q) :

Proof. Suppose, by way of contradiction, that the conclusion is not true. Consequently, there are
x 2 A \ [x+ coneL] and y 2 F (x) such that

y � y 2 � intQ:

Since GrFn
P�K�! GrF , it follows that there exists a sequence (x0n; y

0
n)n2N convergent to (x; y),

with (x0n; y
0
n) 2 GrFn for all n 2 N. Again from (i), one can �nd a sequence (x00n)n2N convergent to

x, with x00n 2 An for all n 2 N.
But, using (iii) from Proposition 3.11, we have

x� x 2 coneL � int coneL�;

so for all n su¢ ciently large
x00n � xn 2 coneL�:

Now, applying (ii) at the point (x; y), there exist a neighborhood V of y such that there exists
(�n) � (0;+1) with �n kx0n � x00nk ! 0 for n! +1 and

y0n 2 Fn
�
x0n
�
\ V � Fn

�
x00n
�
+ �n



x0n � x00n

DY ;
for all n large enough. It follows that one can �nd y00n 2 F (x00n) such that

y00n � y0n

 � �n 

x0n � x00n

 ;
for all n su¢ ciently large. Passing to limit and using that �n kx0n � x00nk ! 0, we obtain that the
sequence (y00n)n2N converges to y. We conclude therefore that for all n 2 N large enough

y00n 2 Fn (An \ [xn + coneL�])

and y00n � yn 2 � intQ, since (y00n � yn)n2N converges to y � y. Whence

(Fn (An \ [xn + coneL�])� yn) \ � intQ = ;;

for all n large enough, the required contradiction. We get the conclusion. �

Remark 4.3 If one takes c 2 K n f0g and " > 0 under the notation and assumptions of the above
theorem, if (xn; yn) 2 ("; c)�WDirMin (Fn; An; L�;K) for all n 2 N then one can similarly prove
that (x; y) 2 ("; c)�WDirMin (F;A;L;Q) :
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We illustrate the above result by the following examples.

Example 4.4 Let X = R2, Y = R; Q = R+; and An = A = R2. Take

L = R2� \ SX

and, for � > 1; we consider the enlargement

C� :=
�
�
�
�1; ��1

�
+ �

�
��1;�1

�
j �; � 2 R+

	
which is, in fact, the ��enlargement of the cone L with � = 1p

1+�2
: For easy computation, we

prefer to work C�; but we keep in mind that, actually, C� = coneL� and �! 0 when �!1:
Firstly, take Fn : R2 � R given by Fn (a; b) = 2

n�a�b for all nonzero natural numbers n: Then,
it is clear that if one takes (xn; yn) =

��
1
n ;

1
n

�
; 0
�
2 GrFn then, (xn; yn) 2WDirMin (Fn; An; L�; Q)

for all � > 1: Indeed,

Fn

�
1

n
+
�
��+ ���1

�
;
1

n
+
�
���1 � �

��
= �� ���1 � ���1 + � = (�+ �)

�
1� ��1

�
� 0;

for every �; � � 0. On the other hand, we take F : R2 � R given by F (a; b) = �a � b and
(x; y) 2 ((0; 0) ; 0) 2 GrF and observe that (x; y) 2 WDirMin (F;A;L;Q) ; whence the conclusion
of the theorem is con�rmed in this case (one can check that all the hypotheses hold).

Take now Fn : R2 � R given by Fn (a; b) = 2
n � a� b+

�
a� 1

n

� �
b� 1

n

�
for all nonzero natural

numbers n: Then, (xn; yn) =
��
1
n ;

1
n

�
; 0
�
2 GrFn is in WDirMin (Fn; An; L;Q) ; but it is not in

WDirMin (Fn; An; L�; Q) ; for any � > 0. Indeed,

Fn

�
1

n
+
�
��+ ���1

�
;
1

n
+
�
���1 � �

��
= �� ���1 � ���1 + � + �� + ����2 � �2��1 � �2��1

= �
�
1� ��1 + � + ���2 � ���1

�
+ � (�� 1� �) ��1;

and for � = 0 and � > �� 1; one has

Fn

�
1

n
+
�
��+ ���1

�
;
1

n
+
�
���1 � �

��
< 0:

Consider now F : R2 � R given by F (a; b) = �a � b + ab and (x; y) 2 ((0; 0) ; 0) 2 GrF
and observe that (x; y) =2 WDirMin (F;A;L;Q) since, for instance, F (�2;�3) > 0: The other
hypotheses of Theorem 4.2 hold. We give a detail concerning the ful�llment of (ii): Clearly, the
linear part of Fn is Lipschitz. We have to deal with the nonlinear part which means to consider the
function f : R2 ! R given by f (a; b) = ab: Take two sequences

�
a1n; b

1
n

�
;
�
a2n; b

2
n

�
convergent to the

same point (a; b) : Denote by M the common constant of boundedness for
�
a1n
�
and

�
b2n
�
: Then��f �a1n; b1n�� f �a2n; b2n��� = ��a1nb1n � a2nb2n�� � ��a1n�� ��b1n � b2n��+ ��b2n�� ��a1n � a2n��

�M
���b1n � b2n��+ ��a1n � a2n��� � p2M 

�a1n; b1n�� �a2n; b2n�

 ;

so the required inequality holds.
Consequently, in Theorem 4.2 it is essential to have the enlargement L� in the assumptions.
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Remark 4.5 In general, the assumptions one �nds in literature to ensure the fact that the limit
point of a sequence of minima for perturbation maps is a minimum of the initial objective map are
quite demanding and this can be seen as well in the paper [8]. For instance, in the quoted work, it
is required a kind of Painlevé-Kuratowski inferior limit for an intersection sequence involving the
objectives (Fn) and the constraints (An) : see [8, De�nition 2.3 (ii)]. Here, we avoid the condition
of convergence of the intersection of sets.

Remark 4.6 The condition (ii) we use in Theorem 4.2 is a generalized Lipschitz-type condition
that involves all the perturbations for n large enough. It was shown in [5] that this condition is
closely linked to the Painlevé-Kuratowski convergence of the images of perturbations. However, as
seen as well in the example above, this is a rather weak condition and quite easy to check, since it
involves two sequences convergent to the same point.

The next result aims at further eliminate some assumptions from the above result and to get
however some conclusion on the underlying point. The idea in the next results is that the limit of
a sequence of minima is not necessarily itself a minimum, but a critical point. This is an important
conclusion since, basically if shows that a limit of minimum points veri�es a generalized Fermat
necessary optimality condition.

Before proceeding any further, we recall some basic fact and references concerning the general-
ized di¤erentiation calculus.

Given a nonempty subset S of a Banach space X and x 2 S, then for every " � 0; the set of
"�normals to S at x is de�ned by

bN"(S; x) = (x� 2 X� j lim sup
u
S!x

x�(u� x)
ku� xk � "

)
;

where u S! x means that u ! x and u 2 S. We denote by bN(S; x) the set bN0(S; x) and we call it
the Fréchet normal cone to S at x:

The basic (or limiting, or Mordukhovich) normal cone to S at x 2 S is de�ned by

N(S; x) = fx� 2 X� j 9"n
(0;1)�! 0; xn

S! x; x�n
w�! x�; x�n 2 bN"n(S; xn);8n 2 Ng:

In the main results of the rest of this section, all the spaces involved are Asplund. In this setting,
if S � X is closed around x, then the basic normal cone takes the following form:

N(S; x) = fx� 2 X� j 9xn
S! x; x�n

w�! x�; x�n 2 bN(S; xn);8n 2 Ng:
One may use the normal cones to the graph of the multifunction F : X � Y at (x; y) 2 GrF

(otherwise the normal cones are empty) to introduce generalized di¤erentiation constructions that
we brie�y recall further.

The Fréchet coderivative of F at (x; y) is the set-valued bD�F (x; y) : Y � � X� with the values

bD�F (x; y)(y�) = fx� 2 X� j (x�;�y�) 2 bN(GrF; (x; y))g;
and the basic coderivative of F at (x; y) is the set-valued map D�F (x; y) : Y � � X� with the values

D�F (x; y)(y�) = fx� 2 X� j (x�;�y�) 2 N(GrF; (x; y))g:

12



In the particular case when F is a function, f say, since y 2 F (x) means y = f (x), we writebD�f (x) for bD�f (x; y), and similarly for D�.
In the convex case, i.e. S is a convex subset of X, the basic normal cone admit the following

representation

N(S; x) = fx� 2 X� j x�(x� x) � 0;8x 2 Sg:

More precisely, N (S; x) coincides with the negative polar of the tangent cone to S at x.
If S � X is closed around x 2 S; one says that S is sequentially normally compact ((SNC), for

short) at x if h
xn

S! x; x�n
w�! 0; x�n 2 bN(S; xn)i) x�n ! 0:

If S is a closed convex cone, C say, the (SNC) property at 0 is equivalent toh
(x�n) � C+; x�n

w�! 0
i
) x�n ! 0:

In particular, if intC 6= ;; then C is (SNC) at 0:
Given the closed subsets S1; S2; :::; Sk of the space X, where k � 2, one say that S1; S2; : : : ; Sk

are allied at x 2 S1 \ S2 \ : : : \ Sk if for every (xin)
Si! x; xin 2 bN(Si; xin); i 2 1; k, the relation

(x�1n + :::+ x
�
kn)! 0 implies (x�in)! 0 for every i 2 1; k. The concept of alliedness was introduced

by Penot and his coauthors in [13] and [11] in order to get a calculus rule for the Fréchet normal cone
to the intersection of sets. More precisely, if the subsets S1; :::; Sk are allied at x, then there exists
r > 0 such that, for every " > 0 and every x 2 [S1 \ :::\Sk]\B(x; r), there exist xi 2 Si \B(x; "),
i 2 1; k such that

bN(S1 \ ::: \ Sk; x) � bN(S1; x1) + :::+ bN(Sk; xk) + "DX� :

In what follows we use the results concerning the theory of generalized di¤erentiation built on
these objects directly at the places we need them, without separate quotation.

Finally, we recall the property of Lipschitz-likeness of multifunctions. Let F : X � Y and
(x; y) 2 GrF: One says that F is Lipschitz-like around (x; y) if there are some neighborhoods U
and V of x and y; respectively and � � 0 such that

F
�
x0
�
\ V � F

�
x00
�
+ �



x0 � x00

DY ;
for all x0; x00 2 U .

Now, we are ready to formulate the �rst of the announced results.

Theorem 4.7 Let F : X ! Y and (Fn) be a sequence of set-valued maps between the Asplund
spaces X and Y: Take A � X and L � SX be nonempty closed sets and suppose that for all n;
(xn; yn) 2 GrFn \ (A� Y ) is a weak directional Pareto minimum point for Fn on A with respect
to L: Suppose that

(i) (xn; yn)! (x; y) 2 GrF \ (A� Y ) ;
(ii) there exists (�n)n�n0 � (0;+1) with �n kxn � xk ! 0 for n ! +1, such that for all

n � n0;
F ((x+ coneL) \A) � Fn ((xn + coneL) \A) + �n kxn � xkDY ;

(iii) F is Lipschitz-like around (x; y) ;
(iv) Q is (SNC) at 0;
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(v) the sets A and x+ coneL are allied at x.
Then there exists y� 2 Q+n f0g such that

0 2 D�F (x; y) (y�) +N (A; x) +N (coneL; 0) :

Proof. Since for all n the point (xn; yn) 2 GrFn is a weak directional Pareto minimum point for
Fn on A with respect to L; then for all c 2 intQ;

GrFn \ [A \ (xn + coneL)� (yn �Q)� (0; c)] = ;:

Indeed, in the contrary case, there would be some (x; y) 2 GrFn with x 2 A \ (xn + coneL) and
y � yn 2 �Q� c � � intQ; which is not possible.

We show that the system
fGrF;A \ (x+ coneL) ; (x; y)g

is extremal (see [12, De�nition 2.1]). Fix c 2 intQ and consider a sequence (tn) � (0;1) with

lim tn =1
lim tn (kyn � yk+ �n kxn � xk) = 0:

Notice that such a sequence does exist since lim (kyn � yk+ �n kxn � xk) = 0: Now, we show that
for all n large enough

GrF \
�
((x+ coneL) \A)� (y �Q)�

�
0;
c

tn

��
= ;;

which in particular implies that the above system is extremal.
Suppose, by way of contradiction, that is not the case. Then there exist a subsequence (nk)

and some sequences ak 2 (x+ coneL) \ A; bk 2 y � Q � c
tnk
, and (ak; bk) 2 GrF for all k: Since

for all k large enough,

F ((x+ coneL) \A) � Fnk ((xnk + coneL) \A) + �nk kxnk � xkDY ;

we get the existence of a0k 2 (xnk + coneL) \A, b0k 2 Fnk (a0k) and uk 2 DY such that

bk = b
0
k + �nk kxnk � xkuk:

Therefore, for all k one has

b0k = bk � �nk kxnk � xkuk 2 y �Q�
c

tnk
� �nk kxnk � xkuk

= ynk + (y � ynk)�Q�
c

tnk
� �nk kxnk � xkuk

= ynk �Q�
�
c

tnk
+ �nk kxnk � xkuk + (ynk � y)

�
:

But, for k large enough,

tnk k(ynk � y) + �nk kxnk � xkukk � tnk (kynk � yk+ �nk kxnk � xk) < d (c;bdQ) ;

whence
c+ tnk (�nk kxnk � xkuk + (ynk � y)) 2 intQ:
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Finally, the relations we got,

b0k � ynk 2 � intQ;
b0k 2 Fnk

�
a0k
�
� F ((xnk + coneL) \A)

lead to a contradiction with the minimality of (xnk ; ynk) :
Thus for

A1 := GrF

and
A2 := [(x+ coneL) \A]� (y �Q) ;

the system fA1; A2; (x; y)g is an extremal system in X � Y . The rest of the proof closely follows
the proof of [3, Theorem 3.20], but for the sake of completeness and because some of the arguments
will be used as well further, we give the details.

Since X � Y is an Asplund space and the sets A1 and A2 are closed around (x; y) ; we can
apply the approximate extremal principle to this system (see, [12, Theorem 2.20]). Therefore, for
every n 2 Nn f0g ; there exist

�
x1n; y

1
n

�
2 GrF \ D

�
(x; y) ; 1n

�
; x2n 2 (x+ coneL) \ A \ D

�
x; 1n

�
;

y2n 2 (y �Q) \D
�
y; 1n

�
; x1�n 2 X�; x2�n 2 X�; y1�n 2 Y �; y2�n 2 Y � such that�
x1�n ; y

1�
n

�
2 bN �GrF; �x1n; y1n��+ 1

n
DX��Y � ;

x2�n 2 bN �(x+ coneL) \A; x2n�+ 1

n
DX� ;

y2�n 2 bN �y �Q; y2n�+ 1

n
DY � = � bN �Q; y � y2n�+ 1

n
DY �

and
x1�n + x

2�
n = 0; y1�n + y2�n = 0;



�x1�n ; y1�n �

+ 

�x2�n ; y2�n �

 = 1: (4.1)

Therefore, there exist
�
u1�n ; v

1�
n

�
2 1
nDX��Y � ; u

2�
n 2 1

nDX� and v2�n 2 1
nDY � such that

x1�n � u1�n 2 bD�F �x1n; y1n� �v1�n � y1�n
�
;

x2�n � u2�n 2 bN �(x+ coneL) \A; x2n� ;
y2�n � v2�n 2 � bN �Q; y � y2n� � Q+:

Using relation (4.1) we obtain that the sequences
�
x1�n
�
;
�
x2�n
�
;
�
y1�n
�
and

�
y2�n
�
are bounded, and

since X and Y are Asplund spaces, there exist x�1 2 X�; x�2 2 X�, y�1 2 Y � and y�2 2 Y � such that
x1�n

w�! x�1; x
2�
n

w�! x�2; y
1�
n

w�! y�1; y
2�
n

w�! y�2. Obviously, x
�
1 + x

�
2 = 0 and y

�
1 + y

�
2 = 0:

Now, if y�1 = 0; then y
�
2 = 0, whence y

2�
n � v2�n

w�! 0 and using the (SNC) assumption we have
that y2�n �v2�n ! 0; whence y2�n ! 0; so y1�n ! 0: Taking into account that F is Lipschitz-like around
(x; y) and using [12, Theorem 1.43], we obtain that x1�n � u1�n ! 0 and since u1�n ! 0; we have that
x1�n ! 0: Using again (4.1) we obtain that x2�n ! 0; which contradicts the fact that y2�n ! 0 and

�x2�n ; y2�n �

 = 1: Hence y�1 6= 0: Moreover, since y�1 + y�2 = 0; y2�n � v2�n

w�! y�2, y
2�
n � v2�n � Q+ and

Q+ is weakly-star closed, we obtain that �y�1 = y�2 2 Q+:
Further, using the hypothesis (iii), for every n large enough, we get that there exist ln 2

(x+ coneL) \B
�
x2n;

1
n

�
; an 2 A \B

�
x2n;

1
n

�
such that

x2�n 2 bN �(x+ coneL) \A; x2n�+ 1

n
DX� � bN (x+ coneL; ln) + bN (A; an) + 2

n
DX� ;
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whence, there exist a�n 2 bN (A; an) ; l�n 2 bN (x+ coneL; ln) such that a�n+ l�n�x2�n ! 0: Further, we
prove that (a�n) or (l

�
n) is bounded. Suppose by contradiction that both sequences are unbounded.

It follows that for every n, there is kn su¢ ciently large such that

n < min
�

a�kn

 ;

l�kn

	 : (4.2)

For simplicity, we denote the subsequences
�
a�kn
�
,
�
l�kn
�
by (a�n) ; (l

�
n) ; respectively. Now, since

a�n 2 bN (A; an) ; l�n 2 bN (x+ coneL; ln) we obtain that
1

n
a�n 2 bN (A; an) ;
1

n
l�n 2 bN (x+ coneL; ln) = bN (coneL; ln � x) :

Since
1

n
ka�n + l�nk �

1

n



a�n + l�n � x2�n 

+ 1

n



x2�n 

 ;
we obtain that 1n (a

�
n + l

�
n)! 0; so using again the hypothesis of alliedness we obtain that 1na

�
n ! 0

and 1
n l
�
n ! 0; which is in contradiction with relation (4.2). Consequently, we obtain that (a�n) ; (l

�
n) �

X� are bounded, thus there exist a�; l� 2 X� such that a�n
w�! a� and l�n

w�! l�; so

x�2 = a
� + l� 2 N (A; x) +N (coneL; 0) :

Now, observe from above that x�1 2 D�F (x; y) (y�2) ; with y�2 2 Q+n f0g and since x�1 + x�2 = 0; we
get that

0 2 D�F (x; y) (y�2) +N (A; x) +N (coneL; 0)

with y�2 2 Q+n f0g ; i.e., the conclusion. �

Remark 4.8 Observe that condition (ii) in Theorem 4.7 is a generalized Lipschitz condition that
involves the initial set-valued map and the perturbation multifunctions.

In [2, De�nition 2.11] a notion of proper minimum with respect to a set of directions in the
input space is proposed. We recall this concept here in an adaptation �tted to our setting here.

De�nition 4.9 Let L � SX be a nonempty closed set. One says that (x; y) 2 GrF is a L�directional
proper Pareto minimum point for F if there exists a constants " > 0 such that

(F (x+ coneL")� y) \ �Q = f0g :

Proposition 4.10 Let (xn; yn) 2 GrFn for all n and (xn; yn)! (x; y) 2 GrF: Suppose that for all
n; (xn; yn) is a L�directional proper Pareto minimum point for F with the same " > 0: Assume that
GrFn

P�K�! GrF: Then for all � 2 (0; ") ; and all q0 2 intQ; the system fGrF; (x+ coneL�)� (y �Q� q0) ; (x; y)g
is extremal.

Proof. Since for all n; (xn; yn) is a L�directional proper Pareto minimum point for F with the
constant " > 0; then for all c 2 intQ;

GrFn \ [((xn + coneL"))� (y �Q)� (0; c)] = ;:

The justi�cation for this is the same as before.
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Fix q0 2 intQ: Suppose that there is a sequence cp ! 0 with elements in intQ such that for a
subsequence still denoted (cp);

GrF \ [((x+ coneL�))� (y �Q� q0)� (0; cp)] 6= ;:

Then for all p; there is (xp; yp) 2 GrF; xp 2 x+ coneL�; yp 2 (y �Q)� cp: Since

GrF � Liminf GrFn;

for all p there is a sequence
�
xnp ; y

n
p

�
n
with

�
xnp ; y

n
p

�
2 GrFn for all n and p; such that

�
xnp ; y

n
p

�
!

(xp; yp) : Then, for n large enough

xnp = xn + x
n
p � xn

= xn + x
n
p � xp + xp � xn

2 xn + xnp � xp � xn + x+ coneL�
� xn + coneL";

and

ynp = yn + y
n
p � yn

= yn + y
n
p � yp + yp � yn

2 yn + ynp � yp + yp + (y �Q� q0)� cp � yn
� yn +

�
ynp � yp

�
+ (y � yn)�Q� q0 � cp

� yn �Q� cp:

This is a contradiction. The conclusion follows. �

Proposition 4.11 Let X;Y be Asplund spaces. Let (xn; yn) 2 GrFn for all n and (xn; yn) !
(x; y) 2 GrF: Suppose that

(i) for all n; (xn; yn) is a L�directional proper Pareto minimum point for F with the same
" > 0;

(ii) GrFn
P�K�! GrF ;

(iii) F is Lipschitz-like around (x; y);
(iv) K is (SNC) at 0.
Then for all � 2 (0; ") ; there is y� 2 Q+n f0g such that

0 2 D�F (x; y) (y�) +N (coneL�; 0) :

Proof. According to the preceding proposition, for all � 2 (0; ") ; and all q0 2 intQ; the system

fGrF; (x+ coneL�)� (y �Q� q0) ; (x; y)g

is extremal. Then since X � Y is an Asplund space, as before, by applying the approximate
extremal principle to this system, for every n 2 Nn f0g ; there exist

�
x1n; y

1
n

�
2 GrF \D

�
(x; y) ; 1n

�
;
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x2n 2 (x+ coneL�)\D
�
x; 1n

�
; y2n 2 (y �Q� q0)\D

�
y; 1n

�
; x1�n 2 X�; x2�n 2 X�; y1�n 2 Y �; y2�n 2 Y �

such that �
x1�n ; y

1�
n

�
2 bN �GrF; �x1n; y1n��+ 1

n
DX��Y � ;

x2�n 2 bN �x+ coneL�; x2n�+ 1

n
DX� ;

y2�n 2 bN �y �Q� q0; y2n�+ 1

n
DY � = � bN �Q+ q0; y � y2n�+ 1

n
DY �

and
x1�n + x

2�
n = 0; y1�n + y2�n = 0;



�x1�n ; y1�n �

+ 

�x2�n ; y2�n �

 = 1:
Therefore, there exist

�
u1�n ; v

1�
n

�
2 1
nDX��Y � ; u

2�
n 2 1

nDX� and v2�n 2 1
nDY � such that

x1�n � u1�n 2 bD�F �x1n; y1n� �v1�n � y1�n
�
;

x2�n � u2�n 2 bN �x+ coneL�; x2n� ;
y2�n � v2�n 2 � bN �Q+ q0; y � y2n� :

But, since Q+ q0 is a convex set, from [12, Proposition 1.3],bN �Q+ q0; y � y2n� = �y� 2 Y � j 
y�; q + q0 � (y � y2n)� � 0; 8q 2 Q	
=
�
y� 2 Y � j hy�; qi+ hy�; q0i �



y�; (y � y2n)

�
8q 2 Q

	
� Q+;

where for the last inclusion one uses that Q is a cone.
Clearly, the sequences

�
x1�n
�
;
�
x2�n
�
;
�
y1�n
�
and

�
y2�n
�
are bounded, and consequently, there exist

x�1 2 X�; x�2 2 X�, y�1 2 Y � and y�2 2 Y � such that x1�n
w�! x�1; x

2�
n

w�! x�2; y
1�
n

w�! y�1; y
2�
n

w�! y�2 and
x�1 + x

�
2 = 0, y

�
1 + y

�
2 = 0:

Using the same reasoning as in the proof of Theorem 4.7, one gets that �y�1 = y�2 2 Q+n f0g :
Then passing to the limit we get

0 2 D�F (x; y) (�y�1) +N (coneL�; 0) :

and this is the conclusion. �

5 Concluding remarks

All the results obtained are in the global case, but of course the concepts at the beginning of
Sections 3 and 4 can be easily de�ned in a local setting. However, local counterparts of many of
the above results can be stated, but nevertheless not all arguments are working properly, without
further speci�c assumptions. The interested reader can adapt the proofs from the global setting
into the local setting, and the main problem is to ensure the existence of a ball around x (for the
issues in Section 3) or around (x; y) (for the problems in Section 4) where the underlying point
enjoys the desired properties. It is a simple matter to see that this could be ensured, in general, if
one asks that lim inf �n > 0, where �n are the radii of the balls around the points in the sequence
of minima of the perturbed problem where the envisaged e¢ ciency property holds.
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[6] M. Durea, M. Panţiruc, R. Strugariu, A new type of directional regularity for mappings and
applications to optimization, SIAM Journal on Optimization, 27 (2017), 1204�1229.

[7] E.-A. Florea, D.-E. Maxim, Directional openness for epigraphical mappings and optimality
conditions for directional e¢ ciency, DOI: doi.org/10.1080/02331934.2019.1711085.

[8] M. Gaydu, M. Geo¤roy, C. Jean-Alexis, D. Nedelcheva, Stability of minimizers of set opti-
mization problems, Positivity, 21 (2017), 127�141.

[9] A. Göpfert, H. Riahi, C. Tammer, C. Z¼alinescu, Variational Methods in Partially Ordered
Spaces, Springer, Berlin, 2003.

[10] C. Günther, C. Tammer, Relationships between constrained and unconstrained multi-objective
optimization and application in location theory, Mathematical Methods of Operations Re-
search, 84 (2016), 359�387.

[11] S. Li, J.-P. Penot, X. Xue, Codi¤erential calculus, Set-Valued and Variational Analysis, 19
(2011), 505�536.

[12] B.S. Mordukhovich, Variational Analysis and Generalized Di¤erentiation, Vol. I: Basic The-
ory, Vol. II: Applications, Springer, Berlin, 2006.

[13] J.-P. Penot, Cooperative behavior of functions, relations and sets, Mathematical Methods of
Operations Research, 48 (1998), 229�246.

19


