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Abstract: We study a metric inequality on sets that ensures the applicability of standard necessary opti-
mality conditions for constrained optimization problems when a new constraint is added. We compare this
condition with other constraint quali�cation conditions in literature and, due to its metric nature, we apply
it to nonsmooth optimization problems in order to perform �rst a penalization and then to give optimality
conditions in terms of generalized di¤erentiability.
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1 Introduction and preliminaries

The starting point of the investigation we propose in this work is the question we brie�y present
below. Generally, if one considers a constrained optimization problem, in order to write necessary
optimality conditions, some constraint quali�cation conditions are necessary. Suppose that we add
to the current system of constraints a new constraint. Of course, the problem can dramatically
change, and even if the initial system satis�es a constraint quali�cation condition, the new system
can fail to do so. We asked ourselves if one can give a condition that links the old system of
constraints and the new constraint in such a way that the optimality conditions apply for the
new problem, without checking a constraint quali�cation condition for the whole new system of
constraints. Actually, we started by asking this question in the case of a smooth optimization
problem with inequalities constraints, and then we observed that in order to keep the requirements
as minimal as possible, we arrive at a metric inequality that naturally comes into play for other
types of optimization problems, including nonsmooth ones, and for some penalization results of
Clarke�s type, as well.

The description we give next of how the paper is organized allows us to underline more details
about the ideas on which it is based.
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In the second section, we present some basic facts about the cost in terms of assumptions needed
for the addition of a new constraint in a smooth scalar optimization problem with inequalities. The
third section deals with a metric condition (in fact, a metric inequality) designed to �ll the gap
between the assumptions used before the addition of a new constraint and the ones needed for
successful implementation of the optimality conditions into the new problem. We perform, by
several examples, a comparison of this metric condition and the usual Mangasarian-Fromowitz
condition. Moreover, we see that this inequality is equivalent, but simpler to check, in comparison
to other similar conditions used in literature. Another important feature of our condition is the
fact that it can be employed in nonsmooth settings, for problems much more general than those we
started with. Section four is twofold. On one hand, we apply some facts collected in the previous
sections to directional Pareto minima in order to get necessary optimality conditions, and, on the
other hand, we employ the general pattern of the metric inequality under study to penalize scalar
nonsmooth optimization problems with multiple constraints. The latter approach allows us to derive
necessary optimality conditions in terms of limiting (Mordukhovich) generalized di¤erentiation
techniques for the problems under consideration. The paper ends with some concluding comments
where, in particular, we brie�y describe some possible continuations of this work.

The notation is fairly standard. If X is a normed vector space, then we denote by B(x; r);
D(x; r) and S(x; r) the open ball, the closed ball and the sphere of center x 2 X and radius r > 0;
respectively. For a set A � X; we denote by intA; clA; bdA its topological interior, closure
and boundary, respectively. The cone generated by A is designated by coneA; and the convex
hull of A is convA. The distance from a point x 2 X to a nonempty set A � X is d(x;A) :=
inf fkx� ak j a 2 Ag and the distance function to A is dA : X ! R given by dA(x) := d(x;A). The
topological dual of X is X�; and the negative polar of A is

A� = fx� 2 X� j x�(a) � 0;8a 2 Ag:

The positive polar of A is A+ := �A�: Of course, A� = (coneA)� :

Let D be a nonempty subset of X and x 2 X: The �rst order Bouligand tangent cone to D at
x is the set

TB(D;x) = fu 2 X j 9(tn) # 0;9(un)! u; 8n 2 N; x+ tnun 2 Dg

where (tn) # 0 means (tn) � (0;1) and tn ! 0: The �rst order Ursescu tangent cone to D at x is
the set

TU (D;x) = fu 2 X j 8(tn) # 0;9(un)! u; 8n 2 N; x+ tnun 2 Dg:

The �rst order Dubovitskij-Miljutin tangent set to D at x is the set

TDM (D;x) = fu 2 X j 8(tn) # 0;8(un)! u; 9n0 2 N,8n � n0; x+ tnun 2 Dg:

The Bouligand and Ursescu tangent cones are closed sets, and TU (D;x) � TB(D;x): The fact
that TB(D;x) = XnTDM (XnD;x) shows that the Dubovitskij-Miljutin tangent set to D at x
is open. Moreover, for � 2 fB;U;DMg we have T�(D;x) = T�(clD;x). If x 2 intA; then
T�(D;x) = T�(D \ A; x). It is well known that x 2 intD if and only if TDM (D;x) = X and
x 2 clD if and only if TB(D;x) 6= ;:

Now, we brie�y collect some basic facts concerning the limiting generalized calculus (see [12]).
The e¤ectiveness of this calculus relies on the concept of normal cone and its main features hold
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on Asplund spaces, which represent a special class of Banach spaces: X is Asplund if, and only
if, every continuous convex function on any open convex set U � X is Fréchet di¤erentiable at
the points of a dense G��subset of U . A very important property of Asplund spaces is that every
bounded sequence of the topological dual admits a w��convergent subsequence.

Take a nonempty subset S of the Asplund space X and pick x 2 S: Then the Fréchet normal
cone to S at x is bN(S; x) := (x� 2 X� j lim sup

u
S!x

x�(u� x)
ku� xk � 0

)
;

where u S! x means that u! x and u 2 S:
Let x 2 S: The basic (or limiting, or Mordukhovich) normal cone to S at x is

N(S; x) := fx� 2 X� j 9xn
S! x; x�n

w�! x�; x�n 2 bN(S; xn);8n 2 Ng:
If S � X is a convex set, then

N(S; x) = fx� 2 X� j x�(x� x) � 0;8x 2 Sg

and coincides with the negative polar of TB(S; x):
Let F : X � Y be a set-valued map between the Asplund spaces X and Y; and (x; y) 2 GrF:

Then the normal coderivative of F at (x; y) is the set-valued map D�F (x; y) : Y � � X� given by

D�F (x; y)(y�) := fx� 2 X� j (x�;�y�) 2 N(GrF; (x; y))g:

As usual, when F := f is a function, since y 2 F (x) means y = f (x) ; we write D�f (x) for
D�f (x; y) :

Let f : X ! R [ f+1g be �nite at x 2 X and lower semicontinuous around x; the Fréchet
subdi¤erential of f at x is given byb@f(x) := fx� 2 X� j (x�;�1) 2 bN(epi f; (x; f(x)))g;
where epi f denotes the epigraph of f ; similarly, the basic (or limiting, or Mordukhovich) subdif-
ferential of f at x is given by

@f(x) := fx� 2 X� j (x�;�1) 2 N(epi f; (x; f(x)))g:

One always has b@f(x) � @f(x): Note that a generalized Fermat rule holds: if x is a local minimum
point for f then 0 2 b@f(x):

It is well-known that if A is a closed set and x 2 A, thenb@dA(x) = bN(A; x) \D (0; 1) ;bN(A; x) = [
�>0

�b@dA(x);
@dA (x) � N (A; x) \D (0; 1) :

If f is a convex function, then both b@f(x) and @f(x) coincide with the Fenchel subdi¤erential.
Moreover, the next calculus rule holds for the Fréchet subdi¤erential of the di¤erence of map-

pings (see [13, Theorem 3.1]): if f1; f2 : X ! R are �nite at x and b@f2(x) 6= ;; thenb@(f1 � f2)(x) � \
x�2b@f2(x)

hb@f1(x)� x�i � b@f1(x)� b@f2(x): (1.1)
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2 Adding a new constraint

We start by illustrating on a smooth optimization problem the main question we deal with in this
paper. Let f; g : X ! R be continuously di¤erentiable functions. Consider the basic optimization
problem

min f(x); subject to g(x) � 0;

and let x 2 X be an optimal solution of this problem. The �rst-order necessary optimality condition
is

rf(x)(u) � 0; 8u 2 TB(Mg; x); (2.1)

where
Mg := fx 2 X j g(x) � 0g

is the set of feasible points. We see that one important issue is to describe the cone TB(Mg; x).
Clearly, if the constraint is not active at the feasible point x (that is, g(x) < 0), then TB(Mg; x) = X
and (2.1) becomes rf(x) = 0 (Fermat�s Theorem).

Otherwise, if the constraint is active at x, i.e., g(x) = 0; we have to suppose that rg(x) 6= 0 in
order to obtain that

TB(Mg; x) = TU (Mg; x) = clTDM (Mg; x) = fu 2 X j rg(x)(u) � 0g : (2.2)

In order to show this, observe �rst that

clTDM (Mg; x) � TU (Mg; x) � TB(Mg; x):

Let now u 2 TB(Mg; x); meaning that there exist (tn) # 0; (un) ! u; n0 2 N, such that for all
n � n0;

g (x+ tnun) � 0:

Since g is di¤erentiable, there exists (vn)! 0 such that for all n � n0

g (x+ tnun) = g(x) + tnrg(x)(un) + tnvn;

i.e.,
tn (rg(x)(un) + vn) � 0:

Whence, passing to the limit in the relation rg(x)(un) + vn � 0; one gets that rg(x)(u) � 0:
Take now u 2 X such that rg(x)(u) < 0: Notice that such an element exists since rg(x) 6= 0:

Take (tn) # 0 and (un)! u: Again, the di¤erentiability property of g means

g (x+ tnun) = g(x) + tnrg(x)(un) + tnvn
= tn (rg(x)(un) + vn) ;

with (vn) ! 0: Since rg(x)(u) < 0 and (un) ! u; for all n large enough, rg(x)(un) + vn < 0,
whence g (x+ tnun) < 0: This means that x+ tnun 2Mg and we get u 2 TDM (Mg; x):

Let now v 2 X such that rg(x)(v) � 0 and � 2 (0; 1): Clearly

rg(x)(�u+ (1� �)v) < 0;

whence, from the previous step, �u+ (1� �)v 2 TDM (Mg; x): Passing to the limit with �! 0; we
get v 2 clTDM (Mg; x); and all the inclusions are proved.
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These facts are well-known, but what we want to underline here is that the essential assumption
for getting (2.2) is rg(x) 6= 0; which for a scalar function is equivalent to the Mangasarian-
Fromowitz condition, that is, to exist u 2 X such that rg(x)(u) < 0:

Now condition (2.1) becomes

rf(x)(u) � 0, subject to rg(x)(u) � 0;

which can be seen as the fact that 0 2 X is an optimal solution to the linear problem

minrf(x)(u); subject to rg(x)(u) � 0:

Then, since for linear problems there is no need of supplementary quali�cation conditions for
applying Karush-Kuhn-Tucker Theorem, we get � � 0 such that

rf(x) + �rg(x) = 0:

Suppose now that the constraint is expressed in the same way, but with a function g = (g1; g2) :
X ! R2; where g(x) � 0 means that g1(x) � 0 and g2(x) � 0: Let x be a feasible point. In the case
of active constraints, that is, g(x) = 0 2 R2; the Mangasarian-Fromowitz condition is: there exists
u 2 X such that rg1(x)(u) < 0 and rg2(x)(u) < 0. On the same lines as before, this condition
ensures that

TB(Mg; x) = TU (Mg; x) = clTDM (Mg; x)

= fu 2 X j rg1(x)(u) � 0;rg2(x)(u) � 0g :

In particular, this means that

TB(Mg; x) = TB(Mg1 ; x) \ TB(Mg2 ; x)

and, in fact, this is the essential relationship to get, on the same argument as in the case of a single
scalar-valued constraint, that there exist �1; �2 � 0 such that

rf(x) + �1rg1(x) + �2rg2(x) = 0:

Now if another scalar-valued constraint is coming into play, that is, if we have g = (g1; g2; g3) :
X ! R3; then for an optimal solution x; if the new constraint is active as well, the corresponding
Mangasarian-Fromowitz condition (there exists u 2 X such that rgi(x)(u) < 0 for i 2 1; 3) ensures,
similarly,

TB(Mg; x) =
3\
i=1

TB(Mgi ; x);

and then the existence of �1; �2; �3 � 0 such that

rf(x) +
3X
i=1

�irgi(x) = 0:

Therefore, according to the facts above, every time we consider another scalar-valued constraint
which is active at the underlying point x, one has to impose the Mangasarian-Fromowitz condition,
and this condition is stronger than the individual Mangasarian-Fromowitz conditions for every of
the components of g:
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3 A metric condition

Our aim is to present a situation when one can replace general Mangasarian-Fromowitz condition
with individual Mangasarian-Fromowitz conditions under a supplementary hypothesis. This idea
will be subject of some generalizations, since it will be clear that the additional assumption we
impose can be extended to nondi¤erentiable settings.

Consider again the situation of g = (g1; g2) : X ! R2. Suppose that g1(x) = 0; g2(x) =
0; rg1(x) 6= 0 and rg2(x) 6= 0: Firstly, looking again at the above arguments, observe that we
have

TB(Mg; x) � TB(Mg1 ; x) \ TB(Mg2 ; x) = TU (Mg1 ; x) \ TB(Mg2 ; x)

= TB(Mg1 ; x) \ TU (Mg2 ; x) = TU (Mg1 ; x) \ TU (Mg2 ; x):

In other words, the general Mangasarian-Fromowitz condition is used exactly to show that we have
the reverse inclusion in the above relation. However, such an inclusion can be obtained as well via
some regularity assumptions on the sets. We refer the reader to the paper [4] and the references
therein for some steps in this direction of investigation.

Theorem 3.1 Let X be a normed vector space and M1;M2 � X be closed sets. Take x 2M1\M2:
Suppose that the following regularity assumption holds: there exist s > 0; � > 0 such that for all
x 2 B(x; s) \M1;

d(x;M1 \M2) � �d(x;M2): (3.1)

Then
TB(M1; x) \ TU (M2; x) � TB(M1 \M2; x)

TU (M1; x) \ TB(M2; x) � TB(M1 \M2; x)

TU (M1; x) \ TU (M2; x) = TU (M1 \M2; x):

Proof. Take u 2 TB(M1; x) \ TU (M2; x); i.e., u 2 TB(M1; x) and u 2 TU (M2; x): Then there exist
(tn) # 0; (un)! u; (vn)! u with x+ tnun 2 M1 and x+ tnvn 2 M2 for all n large enough. Then
one can apply the regularity assumption since x + tnun 2 B(x; s) for n large enough: there exists
pn 2M1 \M2 with

kx+ tnun � pnk < � kx+ tnun � x� tnvnk+ t2n:
Then for every n as above,

kx+ tnun � pnk < � � tn kun � vnk+ t2n;

whence 

t�1n (pn � x)� un

 < � kun � vnk+ tn:
We infer that u0n := t

�1
n (pn � x)! u which, by the fact that for all n large enough

x+ tnu
0
n = pn 2M1 \M2;

allows us to conclude the proof of the �rst inclusion of the theorem. Now, the other relations are
similar. Notice that for the equality in the third relation one takes into account the simple inclusion

TU (M1 \M2; x) � TU (M1; x) \ TU (M2; x):

The proof is complete. �
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Remark 3.2 Observe that if X is �nite dimensional, under condition (3:1) one can prove the
following stronger assertion: for all u 2 TB(M1; x) and v 2 TU (M2; x); there is w 2 TB(M1\M2; x)
such that

kw � uk � � kv � uk :

Indeed, one can follow with obvious modi�cations the proof above and observe that the sequence�
t�1n (pn � x)

�
is bounded, whence it has a convergent subsequence whose limit satis�es the require-

ments for w:

Let us comment on the metric condition (3:1) : A well-known and intensively studied regularity
property for sets is the so-called metric inequality (see [10], [11], [15], [14], and the references
therein): there exist s > 0; � > 0 such that for all x 2 B(x; s);

d(x;M1 \M2) � � (d(x;M1) + d(x;M2)) : (3.2)

Moreover, in the mentioned paper [4] we used some metric subregularity conditions in getting
calculus rules for tangent cones. We recall that a function f : X ! Y is metrically subregular at
(x; f(x)) with respect to M � X when x 2 M and there exist s > 0; � > 0 such that for every
u 2 B(x; s) \M

d(u; f�1(f(x)) \M) � � kf(x)� f(u)k :

Now we prove the equivalence (up to a change of the involved constants) of all these conditions.

Proposition 3.3 Take x 2M1 \M2: The next assertions are equivalent:
(i) there exist s; � > 0 such that for all x 2 B(x; s) \M1;

d(x;M1 \M2) � �d(x;M2):

(ii) there exist r; t; � > 0 such that for all x 2 B(x; r) \M1;

d(x;M1 \M2) � �d(x;B(x; t) \M2):

(iii) there exist r; � > 0 such that for all x 2 B(x; r) \M2;

d(x;M1 \M2) � �d(x;M1):

(iv) there exist r; � > 0 such that for all x 2 B(x; r);

d(x;M1 \M2) � � (d(x;M1) + d(x;M2)) :

(v) the function g : X � X ! X given by g(x; y) := x � y is metrically subregular at (x; x; 0)
with respect to M1 �M2.

(vi) the function h : X �X ! R given by h(x; y) := d(x; y) is metrically subregular at (x; x; 0)
with respect to M1 �M2.

Proof. (i)) (ii) This is obvious for r := s; since d(x;M2) � d(x;B(x; t) \M2):
(ii)) (i) Consider s := min fr; tg and x 2 B(x; 3�1s)\M1: Then for every " 2 (0; 3�1s); there

is x" 2M2 such that

kx� x"k < d(x;M2) + " � kx� xk+ " < 2 � 3�1s:
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Then
kx" � xk � kx� x"k+ kx� xk < s � t;

whence x" 2 B(x; t) \M2; so

d(x;M1 \M2) � �d(x;B(x; t) \M2) � � kx� x"k < � (d(x;M2) + ") :

Since this is true for every " small enough, we arrive at the conclusion.
(i)) (iv) De�ne r = 2�1s and take x 2 B(x; r): Then d(x;M1) � kx� xk < 2�1s; hence there

is m1 2M1 such that kx�m1k < 2�1s: Therefore,

km1 � xk � km1 � xk+ kx� xk < s;

m1 2M1 \B(x; s); and by (i)

d(m1;M1 \M2) � �d(m1;M2):

But then

d(x;M1 \M2) � kx�m1k+ d(m1;M1 \M2)

� kx�m1k+ �d(m1;M2)

� kx�m1k+ � (km1 � xk+ d(x;M2))

� (1 + �) (kx�m1k+ d(x;M2)) :

Since m1 can be chosen such that kx�m1k is arbitrarily close to d(x;M1); it follows that (3.2)
holds for � := 1 + �.

(iv)) (i) This is obvious for s := r and � := �:
(iv) , (iii) This follows by the symmetry of conditions in the items (i) and (iii) and by

(i), (iv):
(i) ) (v) We work on X � X with the box norm, but any equivalent norm can be used, by

adjusting the involved constants accordingly. For x 2M1 \B(x; s); we have by (i) that

d(x;M1 \M2) � �d(x;M2):

Then for any " > 0; there is u" 2M1 \M2 such that

kx� u"k � �d(x;M2) + ":

Moreover, for any y 2 B(x; s) \M2;

ky � u"k � ky � xk+ kx� u"k � (1 + �) kx� yk+ ";
kx� u"k � � kx� yk+ ";

hence

max fkx� u"k ; ky � u"kg � (1 + �) kx� yk+ ";
d((x; y); g�1(0) \ (M1 �M2)) = inf

u2M1\M2

max fkx� uk ; ky � ukg � (1 + �) kx� yk+ ":
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We may let "! 0 and we obtain that for any (x; y) 2 (B(x; s)�B(x; s)) \ (M1 �M2) ;

d((x; y); g�1(0) \ (M1 �M2)) � (1 + �) kx� yk = (1 + �)d(0; g(x; y))
= (1 + �) kg(x; x)� g(x; y)k ;

hence (v) holds.
(v) ) (ii) Suppose that there are s; � > 0 such that for any (x; y) 2 (B(x; s) � B(x; s)) \

(M1 �M2) ;
d((x; y); g�1(0) \ (M1 �M2)) � �d(0; g(x; y)):

Then, for x 2M1 \B(x; s); and for any y 2M2 \B(x; s);

d(x;M1 \M2) = inf
u2M1\M2

kx� uk � inf
u2M1\M2

max fkx� uk ; ky � ukg � � kx� yk :

In conclusion, for any y 2M2 \B(x; s);

d(x;M1 \M2) � � kx� yk ;

hence
d(x;M1 \M2) � �d(x;M2 \B(x; s)):

(v) , (vi) Observe that g�1(0) = h�1(0) and that d(0; g(x; y)) = kx� yk = d(x; y) =
d(0; d(x; y)) = d(0; h(x; y)): �

Remark 3.4 Notice that (3.1) is exactly the fact that x is a local minimum on M1 of the function

x 7! �dM2(x)� dM1\M2(x):

Since the latter function is (1+�)�Lipschitz, by Clarke�s penalization principle ([3, Proposition
2.4.3]), x is a local minimum (without constraints) of

x 7! �dM2(x)� dM1\M2(x) + (1 + �) dM1(x);

which implies that for x around x

dM1\M2(x) � �dM2(x) + (1 + �) dM1(x) � (1 + �) (dM1(x) + dM2(x)) :

This is another argument for (i)) (iv) of the proposition above.

Remark 3.5 The fact that x is a local minimum on M1 of the function

x 7! �dM2(x) + �M1 � dM1\M2(x); (3.3)

where � is the indicator function, means that the condition (3.1) can be seen as a minimality
condition for a di¤erence function. Necessary and su¢ cient conditions for it can be devised in
terms of subdi¤erentials of the involved functions (hence, in our case, in terms of normal cones
of M1;M2;M1 \M2) following the results in [16]. Moreover, in the convex case (that is, both M1

and M2 are convex) the local minimality becomes global minimality, and an equivalent condition in
terms of "�subdi¤erentials (and "�normal cones) is to be found in [9].
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For instance, on Asplund spaces, a well-known consequence of relation (3.2) is a formula for
the Fréchet normal cone of the intersection of sets. But this follows as well when we apply the
generalized Fermat rule to the function (3.3) to get that

0 2 b@ (�dM2 + �M1 � dM1\M2) (x):

Moreover, since the functions �dM2 + �M1 and dM1\M2 are �nite at x; and b@dM1\M2(x) =
bN(M1 \

M2; x) \D (0; 1) 6= ;; it follows by the di¤erence calculus rule for the Fréchet subdi¤erential (1.1)
that

0 2
\

x�2 bN(M1\M2;x)\D(0;1)

hb@ (�dM2 + �M1) (x)� x�
i
:

This means that bN(M1 \M2; x) \D (0; 1) � b@ (�dM2 + �M1) (x)

and, since �M1 is lower semicontinuous and �dM2 is Lipschitz, one applies the approximate calculus
rule for the Fréchet subdi¤erential on Asplund spaces to get x" 2M1\B(x; ") and y" 2M2\B(x; ")
such that b@ (�dM2 + �M1) (x) � b@ (�dM2) (x") +

b@ (�M1) (y") + "D(0; 1):

Then, bN(M1 \M2; x) \D (0; 1) � bN(M2; x") \D(0; �) + bN(M1; y") + "D(0; 1):

In particular, by the fact that the involved objects are cones, by adjusting the involved constants
if needed, it follows that for any " > 0; there exist x" 2 M1 \ B(x; ") and y" 2 M2 \ B(x; ") such
that bN(M1 \M2; x) � bN(M1; x") + bN(M2; y") + "D(0; 1):

Remark 3.6 Notice that, for the convex case, the necessity of some metric inequalities for ensuring
the validity of constraints quali�cation conditions is discussed in [17].

Combining the discussions above, we present two consequences for the systems with multiple
constraints considered in the previous section.

Corollary 3.7 Let g = (g1; g2) : X ! R2 be di¤erentiable, consider x 2 X such that g1(x) =
g2(x) = 0 and rg1(x) 6= 0;rg2(x) 6= 0: If there exist s > 0; � > 0 such that for all x 2 B(x; s)\Mg1 ;

d(x;Mg1 \Mg2) � �d(x;Mg2);

then
TB(Mg; x) = fu 2 X j rg(x)(u) � 0g :

Corollary 3.8 Let g = (g1; g2; g3) : X ! R3 be di¤erentiable, consider x 2 X such that gi(x) = 0
and rgi(x) 6= 0 for i 2 1; 3: If there exist s; t; �; 
 > 0 such that for all x 2 B(x; s) \Mg1 ;

d(x;Mg1 \Mg2) � �d(x;Mg2);

and for all x 2 B(x; t) \Mg1 \Mg2

d(x;Mg1 \Mg2 \Mg3) � 
d(x;Mg3);

then
TB(Mg; x) = fu 2 X j rg(x)(u) � 0g :
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We present some illustrative examples.

Example 3.9 1. Let g1; g2 : R2! R be given by

g1(x; y) = x� y; g2(x; y) = x2 � x+ y:

Consider the sets

M1 =Mg1 =
�
(x; y) 2 R2 j x � y

	
and M2 =Mg2 =

�
(x; y) 2 R2 j y � x� x2

	
:

Take (x; y) = 0 2 R2 and observe that rg1 (x; y) = (1;�1) = �rg2 (x; y) and Mangasarian-
Fromowitz condition holds for these functions individually at (x; y) ; while it does not for (g1; g2):
We have

TB(M1; 0) =
�
(x; y) 2 R2 j x � y

	
and TB(M2; 0) =

�
(x; y) 2 R2 j y � x

	
;

whence
TB(M1; 0) \ TB(M2; 0) =

�
(x; y) 2 R2 j x = y

	
:

On the other hand, M1 \ M2 = f0g; so TB(M1 \ M2; 0) = f0g; whence the equality does not
hold. However, the relation (3.1) does not hold either. Indeed, the relation (3.1) would imply the
existence of � > 0 such that for every small x > 0;

x < x
p
2 = d((x; x) ;M1 \M2) � �d ((x; x) ;M2) � �



(x; x)� �x; x� x2�

 = �x2;
which is impossible.

2. Let g1; g2 : R2! R be given by

g1(x; y) = x� y; g2(x; y) = �x+ y:

Consider the sets

M1 =Mg1 =
�
(x; y) 2 R2 j x � y

	
M2 =Mg2 =

�
(x; y) 2 R2 j y � x

	
:

Take (x; y) = 0 2 R2 and observe that rg1(x) = (1;�1) = �rg2(x) and Mangasarian-Fromowitz
condition holds for these functions individually at (x; y) ; while it does not for (g1; g2): We have

TB(M1; 0) =
�
(x; y) 2 R2 j x � y

	
and TB(M2; 0) =

�
(x; y) 2 R2 j y � x

	
;

whence
TB(M1; 0) \ TB(M2; 0) =

�
(x; y) 2 R2 j x = y

	
:

On the other hand,
M1 \M2 =

�
(x; y) 2 R2 j x = y

	
;

so
TB(M1 \M2; 0) =

�
(x; y) 2 R2 j x = y

	
;

whence the equality does hold. Moreover, it is not di¢ cult to see that the relation (3.1) does hold
as well for small s and � = 1.

11



The last example above shows that the metric condition (3:1) is either strictly weaker than
the global Mangasarian-Fromowitz condition, or independent from it. We do not know which of
these two situations is actually true. The paper [1] contains an example of convex cones for which
equality between tangent cones takes place, while the metric inequality does not, but this example
is not �tted to our situation here.

Nevertheless, the condition (3:1) and the global Mangasarian-Fromowitz condition are only
su¢ cient for having the equality between the tangent cone to the intersection and the intersection
of tangent cones, as the next example shows.

Example 3.10 Consider g1; g2 : R2! R given by

g1(x; y) =

�
x4 sin2 1x � y; if x 6= 0
0; if x = 0;

and

g2(x; y) =

�
x4 sin2 1x + y; if x 6= 0
0; if x = 0;

respectively. We have that rg1(0; 0) = (0;�1) and rg2(0; 0) = (0; 1) whence the individual
Mangasarian-Fromowitz conditions hold, while the global one does not. We have that

TB(Mg1 ; (0; 0)) \ TB(Mg2 ; (0; 0)) = TB(Mg1 \Mg2 ; (0; 0))

= f(a; 0) j a 2 Rg :

Now denote f(x) = x4 sin2 1x for any x 6= 0 and consider, for n 2 N n f0g ; the number

xn =
1

2�

�
1

n
+

1

n+ 1

�
=

2n+ 1

2�n (n+ 1)
;

and the element
(xn; f (xn)) 2Mg1 :

Since

Mg1 \Mg2 = f(0; 0)g [
��

1

k�
; 0

�
j k 2 Z n f0g

�
;

one has that ����xn � 1

n�

���� � d((xn; f (xn)) ;Mg1 \Mg2):

On the other hand,
d((xn; f (xn)) ;Mg2) � 2f (xn) ;

whence, (3:1) would imply the existence of a constant � > 0 such that for all n large enough,����xn � 1

n�

���� = 1

2�n(n+ 1)
� 2�

�
2n+ 1

2�n (n+ 1)

�4
sin2

�
2�n (n+ 1)

2n+ 1

�
;

that is

4�3 � � (2n+ 1)
4

n3 (n+ 1)3
sin2

�
2�n (n+ 1)

2n+ 1

�
:

Of course, this is impossible since the right-hand term converges to 0 as n!1.
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4 Consequences in optimization

In this section we present some consequences of the metric condition discussed above and we give
as well some other similar conditions that can be used in various contexts.

Consider a scalar function f : X ! R and recall that the Hadamard upper directional derivative
of f at x 2 X in direction u 2 X is

d+f(x; u) = limsup
u0!u;t#0

t�1(f(x+ tu0)� f(x));

while the Hadamard lower directional derivative of f at x in direction u is

d�f(x; u) = liminf
u0!u;t#0

t�1(f(x+ tu0)� f(x)):

In [2] a concept of directional minimum was introduced and studied in the vectorial setting
(see also [7]). We consider this concept here, but, initially, for the sake of simplicity, we restrict
ourselves to the scalar case.

De�nition 4.1 Let f : X ! R be a function and A � X, L � S(0; 1) be nonempty closed sets.
One says that x 2 A is a local directional minimum point for f on A with respect to (the set of
directions) L if there exists a neighborhood U of x such that for every x 2 U \ A \ (x+ coneL) ;
f(x) � f(x):

Proposition 4.2 Let f : X ! R be a function, A � X, L � S(0; 1) be nonempty closed sets and
x 2 A: Suppose that there exist s > 0; � > 0 such that

8x 2 B(x; s) \A : d(x;A \ (x+ coneL)) � �d(x; x+ coneL): (4.1)

(i) If x is a local directional minimum point for f on A with respect to L; then d+f(x; u) � 0
for all u 2 TB(A; x) \ L:

(ii) Moreover, if X is �nite dimensional and d�f(x; u) > 0 for all u 2 TB(A; x)\L; then there
exists � > 0 such that x is a local directional minimum point for f (�)+� k� � xk on A with respect
to L:

Proof. Firstly, observe that, according to Theorem 3.1, the metric assumption imposed ensures
that

TB(A; x) \ TU (x+ coneL; x) � TB(A \ (x+ coneL) ; x):

Since, obviously,
TB(A \ (x+ coneL) ; x) � TB(A; x) \ TB(x+ coneL; x)

and
TB(x+ coneL; x) = TU (x+ coneL; x) = TU (coneL; 0) = coneL;

we actually get
TB(A \ (x+ coneL) ; x) = TB(A; x) \ coneL:

Now the proof of both items is quite standard, but we present it here for the sake of clarity.
(i) Remark that the minimality of x on A with respect to a set of directions L is in fact

the minimality of x on A \ (x+ coneL) : Therefore, for every u 2 TB(A; x) \ coneL = TB(A \
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(x+ coneL) ; x); there are some sequences (tn) # 0; (un) ! u such that for all n 2 N; x + tnun 2
U \A \ (x+ coneL) ; whence, for n large enough f (x+ tnun) � f(x): Consequently,

d+f(x; u) � limsup
n!1

t�1n (f(x+ tnun)� f(x)) � 0:

(ii) Suppose, by way of contradiction, that for every positive integer n there exists xn 2 A \
(x+ coneL) \B(x; n�1) such that

f(xn) < f(x)� n�1 kxn � xk :

Then for all n � 1; xn 6= x and

kxn � xk�1 (f(xn)� f(x)) = kxn � xk�1
�
f

�
x+ kxn � xk

xn � x
kxn � xk

�
� f(x)

�
< � 1

n
:

Since X is �nite dimensional, we can suppose, without loss of generality, that
�
xn�x
kxn�xk

�
converges

to an element u which clearly is in TB(A; x) \ L: Therefore

d�f(x; u) � liminf
n!1

kxn � xk�1
�
f

�
x+ kxn � xk

xn � x
kxn � xk

�
� f(x)

�
� 0;

and this is a contradiction. Therefore, the conclusion holds. �

Remark 4.3 According to Proposition 3.3, one can replace (4:1) by any of the equivalent corre-
sponding conditions.

It is interesting, from our point of view, the fact that metric conditions of the type (3.1) come
into play as weak assumptions to ensure the validity of some penalization principles. Even if all the
conditions in Proposition 3.3 are equivalent, the change of constants is important in the construction
of the penalty function. More details will be given after the next results.

Theorem 4.4 (penalty of an intersection of sets) Let f : X ! R be a function and A;B � X
be nonempty, closed sets. Let x 2 A \B be a local minimum point for f on A \B. Suppose that

(i) there exist " > 0 and ` > 0 such that f is `�Lipschitz on B(x; ");
(ii) there exist s > 0; � > 0 such that for all x 2 B(x; s) \A;

d(x;A \B) � �d(x;B):

Then x is a local minimum point for f + `�d(�; B) on A and a local minimum point (without
constraints) for

f + ` (1 + �) d(�; A) + `�d(�; B):

Proof. We prove �rst that x is a local minimum point on A for

f + `�d(�; B):

Let � > 0 be the radius of the ball given by the local minimality of x: We choose � > 0 such that

� < min
n
(1 + �)�1 �; s; (1 + �)�1 "

o
and x 2 A \B(x; �): Since f(x) + `�d(x;B) = f(x); we have

to show that
f(x) � f(x) + `�d(x;B):

14



If x 2 A \B(x; �) \B; this is obvious, by the property of x: Take x 2 A \B(x; �) nB: By (ii);

d(x;A \B) � �d(x;B);

whence, for every � 2 (0;min f�; "g � � (1 + �));

d(x;A \B) < �d(x;B) + �:

This means that there is x� 2 A \B such that

kx� x�k < �d(x;B) + � � � kx� xk+ �:

But,
kx� � xk � kx� � xk+ kx� xk � �� + �+ � = � (1 + �) + � < min f�; "g :

Consequently, x� 2 A \B \B(x; �); whence f(x) � f(x�): Then, by (i);

f(x) � f(x�) � f(x) + ` kx� x�k � f(x) + `�d(x;B) + `�:

Letting �! 0 we get the desired inequality, whence the claim is proved.
Now, observe that f+`�d(�; B) is locally Lipschitz around x with the Lipschitz constant `(1+�):

We apply the standard Clarke penalization principle and we get the conclusion. �

Remark 4.5 In fact, the above result is more general than the usual Clarke penalization principle
which corresponds to the case A = B.

We apply this generalized penalty result for getting necessary optimality conditions in the dual
space for directional minima.

Theorem 4.6 Let X be an Asplund space, f : X ! R be a function, A � X, L � S (0; 1) be
nonempty closed sets and x 2 A: Suppose that:

(i) x is a local directional minimum point for f on A with respect to L;
(ii) there exist " > 0 and ` > 0 such that f is `�Lipschitz on B(x; ");
(iii) there exist s > 0; � > 0 such that for all x 2 B(x; s) \A;

d(x;A \ (x+ coneL)) � �d(x; x+ coneL):

Then there are u� 2 N(A; x); v� 2 N (coneL; 0) with ku�k � ` (1 + �) and kv�k � `�; such that

�u� � v� 2 @f(x):

Proof. Since x is a local directional minimum point for f on A with respect to L; then it is a local
minimum point for f on A\(x+ coneL). Then, on the basis of (ii) and (iii) we can apply Theorem
4.4 to get that x is a local minimum point for f+` (1 + �) d(�; A)+`�d(�; x+coneL): Therefore, since
all the functions are locally Lipschitz around x; one can apply the exact subdi¤erential calculus
rules (see [12, Theorem 3.36]) to get

0 2 @ (f + ` (1 + �) d(�; A) + `�d(�; x+ coneL)) (x)
� @f(x) + ` (1 + �) @d(�; A) (x) + `�@d(�; x+ coneL) (x) :

The conclusion follows. �
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Remark 4.7 The importance of having constants as small as possible is apparent in the conclusion
of Theorem 4.6 in the estimation of the norms of the generalized Lagrange multipliers u� and v�:

Remark 4.8 Observe that if coneL is convex, then N (coneL; 0) = L�:

We illustrate the above results by the following example.

Example 4.9 Let X := R2; A := [0; 1]2 ; L := S ((0; 0) ; 1) \
�
(x; y) 2 R2 j y � x � 0

	
: Consider

the function f : R2 ! R; f(x; y) = 2y�x: Clearly, (0; 0) is a directional minimum point for f on A
with respect to L: Moreover, the assumptions of Theorem 4.6 are satis�ed with ` =

p
5 and � = 1:

Then @f(0; 0) = f(�1; 2)g and there is u� = (0;�1) 2 N(A; (0; 0)); v� = (1;�1) 2 L� satisfying
the conclusion.

On the other hand, if we change only the set of directions to

L := S ((0; 0) ; 1) \
�
(x; y) 2 R2 j y � 3�1 � x � 0

	
;

then one cannot �nd u�; v� to satisfy the conclusion, con�rming that this time (0; 0) is not a
directional minimum point for f on A with respect to L:

In the next result we point out that a metric condition can be imposed as well for a functional
constraint in order to get a penalty result. Let Z be a normed vector space, g : X ! Z be a
function and Q � Z be a pointed closed convex cone. One de�nes the set-valued map ~g : X � Z
given by ~g(x) = g(x) +Q and one considers g�1 (�Q) = ~g�1 (0) as the feasible set.

Theorem 4.10 (penalty for a functional constraint) Let x 2 g�1(�Q) be a local minimum
of f on g�1(�Q). Suppose that

(i) there exist " > 0 and ` > 0 such that f is `�Lipschitz on B(x; ");
(ii) there exist s; � > 0 such that for all x 2 g�1 (�Q+B(0; s)) \B (x; s)

d(x; g�1(�Q)) � �d(0; ~g(x) \B(0; s)):

Then (x; 0) is a local minimum for the function (x; z) 7! f(x) + `� kzk+ ` (1 + �) d((x; z) ;Gr ~g):

Proof. Denote h : X � Z ! R, h(x; z) = f(x) + `� kzk : Clearly, h(x; 0) = f(x) and we show �rst
that (x; 0) is a local minimum on Gr ~g for h: Thus, we have to show that there is � > 0 such that
for all (x; z) 2 (B (x; �)�B(0; �)) \Gr ~g;

f(x) � f(x) + `� kzk :

Let � be the radius of the ball given by the local minimality of x: Take � > 0 such that � <

min
n
" (1 + �)�1 ; s; � (1 + �)�1

o
and (x; z) 2 (B (x; �)�B(0; �)) \ Gr ~g: If z 2 �Q; then by the

property of x;
f(x) � f(x) � f(x) + `� kzk :

Suppose that z =2 �Q: Then there is q 2 Q such that z�q = g (x) ; hence x 2 B (x; �)\g�1(z�q) �
B (x; s) \ g�1 (�Q+B(0; s)) : Now, by (ii);

d(x; g�1(�Q)) � �d(0; ~g(x) \B(0; s)) � � kzk :
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Then for every � 2 (0;min f�; "g � � (1 + �)); there is x� 2 g�1(�Q) such that

kx� x�k < � kzk+ � � �� + �:

Then
kx� � xk � kx� � xk+ kx� xk � �� + �+ � = � (1 + �) + � < min f�; "g :

Therefore, by (i);

f(x) � f(x�) � f(x) + ` kx� x�k � f(x) + `� kzk+ `�:

For �! 0; we get the claim.
Finally, since h is locally Lipschitz around (x; 0) with constant ` (1 + �) ; we apply the standard

Clarke penalization principle and we get the conclusion. �

Theorem 4.11 In the notation above, let X;Z be Asplund spaces and x 2 g�1(�Q) be a local
minimum of f on g�1(�Q). Suppose that

(i) there exist " > 0 and ` > 0 such that f is `�Lipschitz on B(x; ");
(ii) there exist s; � > 0 such that for all x 2 g�1 (�Q+B(0; s)) \B (x; s)

d(x; g�1(�Q)) � �d(0; ~g(x) \B(0; s)):

Then
�@f(x) \D(0; ` (1 + �)) \D�~g(x; 0)(Q+ \D(0; `�)) 6= ;:

Proof. Following Theorem 4.10, (x; 0) is a local minimum for the function (x; z) 7! f(x)+`� kzk+
` (1 + �) d((x; z) ;Gr ~g); whence

(0; 0) 2 @f(x)� f0g+ f0g � `�@ k�k (0) + ` (1 + �) @d((�; �) ;Gr ~g) (x; 0) :

Then there are x� 2 @f(x); z� 2 D(0; `�) such that

(�x�;�z�) 2 N (Gr ~g; (x; 0)) and
k(x�; z�)k � ` (1 + �) :

In particular, this means that

kx�k � ` (1 + �) and
�x� 2 D�~g(x; 0) (z�) :

Taking into account the de�nition of the limiting normal cone, (�x�;�z�) can be approached in
the weak-star topology by some elements (�x�n;�z�n) elements in the Fréchet normal cone to Gr ~g
at points close to (x; 0) : According to [5, Lemma 3.2], the elements z�n are in Q

+ and since this set
is weakly-star closed, z� 2 Q+: Therefore, z� 2 Q+ \D(0; `�) and then we get the conclusion. �

By combining both penalty principles above, we can get optimality conditions for directional
minima under functional constraints.

17



Corollary 4.12 In the notation above, let x be a local directional minimum point for f on g�1(�Q)
with respect to L: Suppose that

(i) there exist " > 0 and ` > 0 such that f is `�Lipschitz on B(x; ");
(ii) there exist s; � > 0 such that for all x 2 g�1 (�Q+B(0; s)) \B (x; s)

d(x; g�1(�Q)) � �d(0; ~g(x) \B(0; s))

and for all x 2 B(x; s) \ g�1(�Q);

d(x; g�1(�Q) \ (x+ coneL)) � �d(x; x+ coneL):

Then

�@f(x)\D(0; `�+ ` (1 + �)2)\
�
N (coneL; 0) \D(0; `�) +D�~g(x; 0)(Q+ \D(0; ` (1 + �)�))

�
6= ;:

Proof. Using the assumptions, by Theorems 4.4 and 4.10, successively, x is a minimum point for

f + `�d(�; (x+ coneL))

on g�1(�Q) and (x; 0) is unconstrained minimum for

(x; z) 7! f(x) + `�d(x; (x+ coneL)) + ` (1 + �)� kzk+ ` (1 + �)2 d((x; z) ;Gr ~g):

Employing again the limiting calculus rule, we get that there are x� 2 @f(x); u� 2 N (coneL; 0) ; z� 2
Z� with ku�k � `�; kz�k � ` (1 + �)�; kx�k � `�+ ` (1 + �)2 and

(�x� � u�;�z�) 2 N (Gr ~g; (x; 0)) :

As above, z� 2 Q+ and summing up we have the conclusion. �
Finally, we give some optimality conditions for a concept of directional minimum with respect

to two sets of directions for vectorial functions (see [7]). One needs an auxiliary result.

Lemma 4.13 Let X;Y be Banach spaces, f : X ! Y a continuously di¤erentiable function,
M � SY a closed and nonempty set, and x 2 X. Suppose that one of the following sets of
conditions holds:

(i) coneM is convex and there exists u0 2 X such that rf(x)(u0) 2 � int(coneM);
(ii) the map g : X � Y ! Y given by g(x; y) = f(x)� y is metrically subregular at (x; f(x); 0)

with respect to X � f�1(f(x)� coneM).
Then

TB(f
�1(f(x)� coneM); x) = rf(x)�1(� coneM): (4.2)

Proof. Provided that f is continuously di¤erentiable, it is always true that TB(f�1(f(x) �
coneM); x) � rf(x)�1(� coneM). Indeed, for an arbitrary u 2 TB(f

�1(f(x) � coneM); x),
there exist (tn) # 0 and (un) ! u such that f(x + tnun) 2 f(x) � coneM for all n. Since f is
continuously di¤erentiable at x, this means that there exists a function � : X ! Y such that
limh!0 �(x+ h) = �(x) = 0 and

f(x+ tnun) = f(x) + tnrf(x)(un) + tn�(x+ tnun)kunk:

Therefore,
tnrf(x)(un) + tn�(x+ tnun)kunk 2 � coneM;
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and from here, dividing by tn and passing to the limit, one gets u 2 rf(x)�1(� coneM).
If the condition from (ii) holds, the conclusion is granted by [4, Theorem 3.1].
Suppose now that we are under the assumptions from (i). Let (tn) be an arbitrary sequence of

positive numbers converging to 0, and set un := u0. Using the di¤erentiability of f , we can write

f(x+ tnun) =f(x) + tnrf(x)(un) + tn�(x+ tnun)kunk
=f(x) + tn[rf(x)(u0) + �(x+ tnu0)ku0k];

where � : X ! Y is such that lim
n!1

�(x + tnun) = �(x) = 0: Therefore, since rf(x)(u0) 2
� int(coneM), we have that for all n large enough, f(x + tnu0) 2 f(x) � coneM , that is u0 2
TU (f

�1(f(x)� coneM); x).
Consider now v 2 X such that rf(x)(v) 2 � coneM , and � 2 (0; 1). Then

rf(x)(�u0 + (1� �)v) 2 �(int(coneM) + coneM) = � int(coneM):

Hence, from the previous step,

�u0 + (1� �)v 2 TU (f�1(f(x)� coneM); x):

Passing to the limit with � ! 0, and taking into account that the adjacent cone is closed, we get
that v 2 TU (f�1(f(x) � coneM); x) � TB(f�1(f(x) � coneM); x), and this completes the proof.
�

We recall now the Gerstewitz (Tammer) scalarization functional (see, for instance [8, Section
2.3]).

Lemma 4.14 Let K � Y be a closed convex cone with nonempty interior. Then for every e 2
intK, the functional se : Y ! R given by

se(y) = infft 2 R j te 2 y +Kg

is continuous and sublinear. Moreover, for every t 2 R,

fy 2 Y j se(y) < tg = te� intK:

We give the de�nition of e¢ ciency from [7].

De�nition 4.15 Let X and Y be normed vector spaces, K � Y a closed ordering cone with
nonempty interior, f : X ! Y , and A � X, L � SX , M � SY closed sets. One says that x 2 A is
a weak local directional Pareto minimum point for f with respect to the sets of directions L and M
on A if there exists a neighborhood U for x such that

[[f(A \ U \ (x+ coneL)) \ (f(x)� coneM)]� f(x)] \ (� intK) = ;:

We are now able to present the necessary optimality conditions.

Theorem 4.16 Let X, Y be Banach spaces, f : X ! Y a continuously di¤erentiable function,
K � Y a closed convex ordering cone with nonempty interior, A � X, L � SX and M � SY closed
and nonempty sets, and x 2 A. Assume there exist s; �; t; 
 > 0 such that

d(x;A \ (x+ coneL)) � �d(x; x+ coneL); 8x 2 B(x; s) \A;

19



and
d(x;A \ (x+ coneL) \ f�1(f(x)� coneM)) � 
d(x; f�1(f(x)� coneM));

8x 2 B(x; t) \A \ (x+ coneL):

Suppose also that either (i) or (ii) from Lemma 4.13 hold, and x is a weak local directional Pareto
minimum for f on A with respect to L and M .

Then
rf(x)(u) =2 � intK; 8u 2 TB(A; x) \ coneL \rf(x)�1(�coneM):

Proof. First, we observe that the metric assumptions ensure the equality

TB(A\(x+coneL)\f�1(f(x)�coneM); x) = TB(A; x)\TB(x+coneL; x)\TB(f�1(f(x)�coneM); x):

But TB(x+ coneL; x) = coneL and since we are under assumptions (i) or (ii) from Lemma 4.13,
we also have

TB(f
�1(f(x)� coneM); x) = rf(x)�1(� coneM):

Therefore,

TB(A \ (x+ coneL) \ f�1(f(x)� coneM); x) = TB(A; x) \ coneL \rf(x)�1(� coneM): (4.3)

The minimality of x means there exists a neighborhood U for x such that

[[f(A \ U \ (x+ coneL)) \ (f(x)� coneM)]� f(x)] \ (� intK) = ;:

That is, for every e 2 intK and every x 2 A \ U \ (x + coneL) \ f�1(f(x) � coneM), we have
se(f(x)�f(x)) � 0 since f(x)�f(x) =2 � intK. We can now see x as a local minimum point for the
scalar function g : X ! R given by g(x) = se(f(x)�f(x)) on A\(x+coneL)\f�1(f(x)�coneM).
Note that g(x) = se(0) = 0 because se is sublinear.

Consider now u 2 TB(A; x) \ cone(L) \ rf(x)�1(� coneM). There exist (tn) # 0 and un ! u
such that

x+ tnun 2 A \ (x+ coneL) \ f�1(f(x)� coneM);

due to (4.3). Moreover, since x+ tnun ! x, we also have that x+ tnun 2 U for n su¢ ciently large.
Hence,

g(x+ tnun) � g(x), se(f(x+ tnun)� f(x)) � 0;

for all n su¢ ciently large. There exists a function � : X ! Y such that limh!0 �(x+h) = �(x) = 0,
so that we can write

se(tnrf(x)(un) + tn�(x+ tnun)kunk) � 0:

Dividing by tn and passing to the limit, we get se(rf(x)(u)) � 0, that is rf(x)(u) =2 � intK. The
proof is complete. �

5 Concluding remarks

The type of metric inequalities on sets that we discuss and apply in this work is helpful in at least
two aspects related to optimization problems. First of all, it is an appropriate replacement for some
constraint quali�cation conditions when a new constraint is added. Secondly, it is naturally involved
in penalization results when several constraints are considered. By their nature, as underlined, these
metric inequalities are rather weak and this o¤ers the perspective of applying the general principle
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behind the results in this work to other research directions. Therefore, the metric relations we
study here can be extended as well for deriving calculus rules for tangent cones by changing the
conditions based on subregularities of mappings initiated in [4]. Moreover, penalization procedures
for vectorial problems with multiple constraints based on results such as those in [18] and [6] are
to be envisaged in future works.
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