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Abstract: We study a metric inequality on sets that ensures the applicability of standard necessary opti-
mality conditions for constrained optimization problems when a new constraint is added. We compare this
condition with other constraint qualification conditions in literature and, due to its metric nature, we apply
it to nonsmooth optimization problems in order to perform first a penalization and then to give optimality
conditions in terms of generalized differentiability.
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1 Introduction and preliminaries

The starting point of the investigation we propose in this work is the question we briefly present
below. Generally, if one considers a constrained optimization problem, in order to write necessary
optimality conditions, some constraint qualification conditions are necessary. Suppose that we add
to the current system of constraints a new constraint. Of course, the problem can dramatically
change, and even if the initial system satisfies a constraint qualification condition, the new system
can fail to do so. We asked ourselves if one can give a condition that links the old system of
constraints and the new constraint in such a way that the optimality conditions apply for the
new problem, without checking a constraint qualification condition for the whole new system of
constraints. Actually, we started by asking this question in the case of a smooth optimization
problem with inequalities constraints, and then we observed that in order to keep the requirements
as minimal as possible, we arrive at a metric inequality that naturally comes into play for other
types of optimization problems, including nonsmooth ones, and for some penalization results of
Clarke’s type, as well.

The description we give next of how the paper is organized allows us to underline more details
about the ideas on which it is based.
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In the second section, we present some basic facts about the cost in terms of assumptions needed
for the addition of a new constraint in a smooth scalar optimization problem with inequalities. The
third section deals with a metric condition (in fact, a metric inequality) designed to fill the gap
between the assumptions used before the addition of a new constraint and the ones needed for
successful implementation of the optimality conditions into the new problem. We perform, by
several examples, a comparison of this metric condition and the usual Mangasarian-Fromowitz
condition. Moreover, we see that this inequality is equivalent, but simpler to check, in comparison
to other similar conditions used in literature. Another important feature of our condition is the
fact that it can be employed in nonsmooth settings, for problems much more general than those we
started with. Section four is twofold. On one hand, we apply some facts collected in the previous
sections to directional Pareto minima in order to get necessary optimality conditions, and, on the
other hand, we employ the general pattern of the metric inequality under study to penalize scalar
nonsmooth optimization problems with multiple constraints. The latter approach allows us to derive
necessary optimality conditions in terms of limiting (Mordukhovich) generalized differentiation
techniques for the problems under consideration. The paper ends with some concluding comments
where, in particular, we briefly describe some possible continuations of this work.

The notation is fairly standard. If X is a normed vector space, then we denote by B(z,r),
D(z,r) and S(x,r) the open ball, the closed ball and the sphere of center x € X and radius r > 0,
respectively. For a set A C X, we denote by int A, cl A, bd A its topological interior, closure
and boundary, respectively. The cone generated by A is designated by cone A, and the convex
hull of A is conv A. The distance from a point x € X to a nonempty set A C X is d(z, A) =
inf {||]z — al| | a € A} and the distance function to A is d4 : X — R given by da(z) := d(z, A). The
topological dual of X is X*, and the negative polar of A is

A" ={z" € X" | 2%(a) <0,Va € A}.
The positive polar of A is AT := —A~. Of course, A~ = (cone A) ™ .

Let D be a nonempty subset of X and T € X. The first order Bouligand tangent cone to D at
T is the set
Tp(D,z) ={ue X |3(t,) | 0,3(up) — u,Vn € N,T + t,u, € D}

where (t,) | 0 means (t,) C (0,00) and ¢, — 0. The first order Ursescu tangent cone to D at T is
the set
Ty(D,7) ={ue X |Y(ty) | 0,3(un) — u,Yn € N,T + tyu, € D}.

The first order Dubovitskij-Miljutin tangent set to D at T is the set
Tpym(D,Z) ={u e X |V(tn) | 0,¥(up) — w,3Ing € NVn > ng, T + thu, € D}.

The Bouligand and Ursescu tangent cones are closed sets, and Ty (D,Z) C Tp(D,T). The fact
that Ts(D,z) = X\Tpm(X\D,Z) shows that the Dubovitskij-Miljutin tangent set to D at T
is open. Moreover, for x € {B,U, DM} we have Ty,(D,z) = Ti(clD,z). If T € int A, then
T.(D,z) = Tu(D N A,Z). It is well known that T € int D if and only if Tpy/(D,7Z) = X and
T € cl D if and only if Tp(D, ) # 0.

Now, we briefly collect some basic facts concerning the limiting generalized calculus (see [12]).
The effectiveness of this calculus relies on the concept of normal cone and its main features hold



on Asplund spaces, which represent a special class of Banach spaces: X is Asplund if, and only
if, every continuous convex function on any open convex set U C X is Fréchet differentiable at
the points of a dense Gs—subset of U. A very important property of Asplund spaces is that every
bounded sequence of the topological dual admits a w*—convergent subsequence.

Take a nonempty subset S of the Asplund space X and pick z € S. Then the Fréchet normal
cone to S at x is

P ]

N(S,:):) = {x* € X" | limsupw < O},

S
where © — x means that v — = and u € S.
Let 7 € S. The basic (or limiting, or Mordukhovich) normal cone to S at T is
N(S,z):={z* € X* | Tz, 5 T, ), N o,z € N(S,xn),Vn € N}.
If S € X is a convex set, then
N(S,z)={z" € X* | 2"(x —T) <0,Vx € S}

and coincides with the negative polar of Tg(S,Z).
Let F': X = Y be a set-valued map between the Asplund spaces X and Y, and (Z,7) € Gr F.
Then the normal coderivative of F' at (Z,7) is the set-valued map D*F(Z,7) : Y* = X* given by

D*F(z,9)(y") = {«" € X" | (2", —y") € N(Gr F, (7, 7)) }-

As usual, when F := f is a function, since § € F (T) means § = f(T), we write D*f (z) for
D*f(z,y).

Let f : X — RU{+o0} be finite at T € X and lower semicontinuous around Z; the Fréchet
subdifferential of f at T is given by

0f(@) = {z* € X* | («", ~1) € N(epi f, (@, f(@)))},

where epi f denotes the epigraph of f; similarly, the basic (or limiting, or Mordukhovich) subdif-
ferential of f at T is given by

Of (@) :={a" € X" [ (2%, —1) € N(epi f, (7, f(T)))}-

One always has B f(x) C 0f (). Note that a generalized Fermat rule holds: if T is a local minimum
point for f then 0 € 0f(T).
It is well-known that if A is a closed set and T € A, then

dda(x) = N(A,Z)n D (0,1),
N(A,7) = | JAdda(@),
A>0

dd4 (T) C N(A,7)ND(0,1).

If f is a convex function, then both Jf (Z) and Of () coincide with the Fenchel subdifferential.
Moreover, the next calculus rule holds for the Fréchet subdifferential of the difference of map-
pings (see [13, Theorem 3.1)): if fi, fo : X — R are finite at T and 0f2(T) # 0, then

dfhi-f@c () [0h@ -] cn@ -h@). (L1)

€012 (T)



2 Adding a new constraint

We start by illustrating on a smooth optimization problem the main question we deal with in this
paper. Let f,g: X — R be continuously differentiable functions. Consider the basic optimization
problem

min f(x), subject to g(z) <0,

and let T € X be an optimal solution of this problem. The first-order necessary optimality condition
is

Vf(@)(uw) >0, Vu € Tp(Mgy,T), (2.1)

where
My :={z e X |g(x) <0}

is the set of feasible points. We see that one important issue is to describe the cone Tp(My,T).
Clearly, if the constraint is not active at the feasible point Z (that is, g(Z) < 0), then Tp(M,,7) = X
and (2.1) becomes V f(Z) = 0 (Fermat’s Theorem).

Otherwise, if the constraint is active at T, i.e., g(Z) = 0, we have to suppose that Vg(Z) # 0 in
order to obtain that

Tp(My,z) =Ty (Mg, 7) = clTpy (Mg, T) = {u € X | Vg(T)(u) < 0}. (2.2)
In order to show this, observe first that
ClTDM(Mg,f) C TU(MQ,E) C TB(Mg,T).

Let now u € Tp(My, ), meaning that there exist (¢,) | 0,(un) — w,no € N, such that for all
n = ng,
9 (T +thuy,) <O0.

Since ¢ is differentiable, there exists (v,) — 0 such that for all n > ng
9 (T + tpun) = 9(T) + t,Vg(T) (up) + thon,

o £ (Vg(Z)(tn) + 1) < 0.

Whence, passing to the limit in the relation Vg¢(Z)(uy,) + v, < 0, one gets that Vg(z)(u) < 0.
Take now u € X such that Vg(Z)(u) < 0. Notice that such an element exists since Vg(Z) # 0.
Take (t,) | 0 and (up) — u. Again, the differentiability property of g means

9 (T + thun) = g(@) + tnVg(T)(un) + thon
=tn (Vg(T)(un) +vn),

with (v,) — 0. Since Vg(7)(u) < 0 and (u,) — u, for all n large enough, Vg(Z)(u,) + v, < 0,
whence ¢ (T + tpu,) < 0. This means that T + t,u, € M, and we get v € Tpyr(My, T).
Let now v € X such that Vg(Z)(v) <0 and A € (0,1). Clearly

Vg(@)(Au+ (1 —Nv) <0,

whence, from the previous step, Au + (1 — X)v € Tpar(My, T). Passing to the limit with A — 0, we
get v € clTpy(My, ), and all the inclusions are proved.
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These facts are well-known, but what we want to underline here is that the essential assumption
for getting (2.2) is Vg(Z) # 0, which for a scalar function is equivalent to the Mangasarian-
Fromowitz condition, that is, to exist u € X such that Vg(Z)(u) < 0.

Now condition (2.1) becomes
Vf(Z)(u) > 0, subject to Vg(Z)(u) <0,
which can be seen as the fact that 0 € X is an optimal solution to the linear problem
min V f(Z)(u), subject to Vg(Z)(u) < 0.

Then, since for linear problems there is no need of supplementary qualification conditions for
applying Karush-Kuhn-Tucker Theorem, we get A > 0 such that

V(@) + AVyg(T) =0.

Suppose now that the constraint is expressed in the same way, but with a function g = (g1, ¢92) :
X — R?% where g(z) < 0 means that g;(z) < 0 and go(x) < 0. Let T be a feasible point. In the case
of active constraints, that is, g(Z) = 0 € R?, the Mangasarian-Fromowitz condition is: there exists
u € X such that Vg1(Z)(u) < 0 and Vga(Z)(u) < 0. On the same lines as before, this condition
ensures that

TB(MQ,E) = TU(Mg,f) = CITDM(MQ,E)
={u e X | Vg1(Z)(u) <0,Vgz(T)(u) <0}

In particular, this means that
TB(MQ’ f) = TB(ME]l?j) N TB(MQmE)

and, in fact, this is the essential relationship to get, on the same argument as in the case of a single
scalar-valued constraint, that there exist A1, Ag > 0 such that

Vf(f) + >\1Vgl(§) + )\QVgg(f) =0.

Now if another scalar-valued constraint is coming into play, that is, if we have g = (g1, 92,93) :
X — R3, then for an optimal solution Z, if the new constraint is active as well, the corresponding
Mangasarian-Fromowitz condition (there exists u € X such that Vg;(Z)(u) < 0 for 7 € 1,3) ensures,
similarly,

3
TB(Mgvf) = ﬂTB(Mgiﬂf)v
i=1

and then the existence of A1, A, A3 > 0 such that

3
V() + Z/\Ngi(i) =0.
=1

Therefore, according to the facts above, every time we consider another scalar-valued constraint
which is active at the underlying point Z, one has to impose the Mangasarian-Fromowitz condition,
and this condition is stronger than the individual Mangasarian-Fromowitz conditions for every of
the components of g.



3 A metric condition

Our aim is to present a situation when one can replace general Mangasarian-Fromowitz condition
with individual Mangasarian-Fromowitz conditions under a supplementary hypothesis. This idea
will be subject of some generalizations, since it will be clear that the additional assumption we
impose can be extended to nondifferentiable settings.

Consider again the situation of ¢ = (g1,92) : X — R2 Suppose that ¢1(Z) = 0, g2(T) =
0, Vg1(T) # 0 and Vgo(T) # 0. Firstly, looking again at the above arguments, observe that we
have

TB(Mgvf) - TB(M917 ) N TB(M927 ) = TU(M917E) n TB(Mgzv )

- TB<M91v ) N TU(M927 ) = TU(M917E> n TU(Mgwx)'
In other words, the general Mangasarian-Fromowitz condition is used exactly to show that we have
the reverse inclusion in the above relation. However, such an inclusion can be obtained as well via

some regularity assumptions on the sets. We refer the reader to the paper [4] and the references
therein for some steps in this direction of investigation.

Theorem 3.1 Let X be a normed vector space and My, My C X be closed sets. Take T € My N Mos.
Suppose that the following regularity assumption holds: there exist s > 0,u > 0 such that for all
x € B(z,s) N My,

d(x, My N M) < pd(z, Ms). (3.1)

Then
TB(Ml,f) N TU(MQ,E) - TB(M1 N Mz,f)

TU(Ml,f) ﬂTB(Mg,T) - TB(M1 N Mg,f)
Ty (M, @) N Ty (Ma, ) = Ty (My N Ma, T).

Proof. Take u € Tg(M;,T) N Ty (Mo, T), ie., u € Tp(M1,T) and u € Ty (Mo, T). Then there exist
(tn) 1 0, (up) — u, (vy) — u with T + t,u, € My and T + t,v, € My for all n large enough. Then
one can apply the regularity assumption since T + t,u, € B(Z,s) for n large enough: there exists
Pn € M1 N Mo with

|1 + tntn — pull < plIZ + tnun — T — tyon|| + £

Then for every n as above,
|Z + tntn — pull < p-tn |lun — vnll + t?w

whence
Ht;l(pn —T) — unH < p|un — vpl| + ty-

We infer that u, := t,(p, — Z) — u which, by the fact that for all n large enough
T + tyu, = pn € M1 N Mo,

allows us to conclude the proof of the first inclusion of the theorem. Now, the other relations are
similar. Notice that for the equality in the third relation one takes into account the simple inclusion

Ty(My N M, Z) C Ty(My,7) N Ty(Ma, T).

The proof is complete. O



Remark 3.2 Observe that if X is finite dimensional, under condition (3.1) one can prove the
following stronger assertion: for allu € Tp(My,T) and v € Ty (Ma,T), there is w € Tp(M;N M, )
such that

lw = ull < pflv—ul|.

Indeed, one can follow with obvious modifications the proof above and observe that the sequence
(t;l(pn — E)) is bounded, whence it has a convergent subsequence whose limit satisfies the require-
ments for w.

Let us comment on the metric condition (3.1). A well-known and intensively studied regularity
property for sets is the so-called metric inequality (see [10], [11], [15], [14], and the references
therein): there exist s > 0, 4 > 0 such that for all z € B(Z, s),

d(x, My N M) < p(d(x, My)+ d(x, Ms)) . (3.2)

Moreover, in the mentioned paper [4] we used some metric subregularity conditions in getting
calculus rules for tangent cones. We recall that a function f : X — Y is metrically subregular at
(7, f(T)) with respect to M C X when € M and there exist s > 0, ¢ > 0 such that for every
u€ B(z,s)N M

d(u, £~ (F(®) N M) < || £F) — ()]

Now we prove the equivalence (up to a change of the involved constants) of all these conditions.

Proposition 3.3 Take T € My N Ms. The next assertions are equivalent:
(i) there exist s, > 0 such that for all x € B(T,s) N My,

d(z, My N M) < pd(z, Ma).

(i) there exist r,t, ;> 0 such that for all x € B(z,r) N M,
d(x, M1 N Ms) < pd(xz, B(Z,t) N Ma).

(iii) there exist r,v > 0 such that for all x € B(T,r) N Ma,

d(x, My N Ms) < wvd(x, My).
(iv) there exist r,v > 0 such that for all x € B(z,r),

d(xz, My N M) < v (d(x, My) + d(x, Ms)).
(v) the function g : X x X — X given by g(z,y) := x — y is metrically subregular at (Z,=,0)
with respect to My x Ms.

(vi) the function h: X x X — R given by h(z,y) := d(z,y) is metrically subregular ot (Z,T,0)
with respect to My x M.

Proof. (i) = (i¢) This is obvious for r := s, since d(x, M2) < d(x, B(T,t) N Ma).
(ii) = (i) Consider s := min {r,t} and = € B(Z,371s) N M;. Then for every € € (0,37 s), there
is x. € M such that

|z — 2| < d(z, M) +e < ||z —Z|| +e<2-37!s.



Then
[ze —Z|| < [lz — 2| + |lz — 7| <s <t

whence z. € B(Z,t) N Ma, so

d(z, My N M) < pd(z, B(T,t) N M) < pl|lz — ze|| < p(d(z, M) +€) .

Since this is true for every ¢ small enough, we arrive at the conclusion.
(i) = (iv) Define r = 27 !s and take z € B(%,r). Then d(z, M;) < ||z — Z|| < 27 !s, hence there
is my1 € My such that ||z —mq| < 27 1s. Therefore,

[m1 = 2| < [[ma —zl| + llz —z[| <s,
my € My N B(z,s), and by (7)
d(my, My N My) < pd(my, Ma).
But then

d(x, M1 N Ms) < || — mq|| + d(mq, My N M)
< |lz = ma|l + pd(my, M)
< llz—mall + p(llm1 — 2| + d(z, Ma))
< (L4 p) (lz = ma || + d(z, Ma)) .

Since m; can be chosen such that || —mq] is arbitrarily close to d(z, M), it follows that (3.2)
holds for v : =1+ p.

(tv) = (4) This is obvious for s :=r and p = v.

(iv) < (uit1) This follows by the symmetry of conditions in the items (i) and (#4i) and by

(1) = (v) We work on X x X with the box norm, but any equivalent norm can be used, by
adjusting the involved constants accordingly. For x € My N B(Z, s), we have by (i) that

d(x, My N M) < pd(z, Ma).
Then for any € > 0, there is u. € M7 N Ms such that
|z — uel] < pd(z, M) + .
Moreover, for any y € B(Z, s) N M,

ly —uell < lly — 2| + [lo —uel| < X+ p) [z —yll + &,
[l = ue| < plle =yl +e,

hence
max { ||z — uell, [|[y — uell} < (1+p) |z —yll +e,

d((z,y),9710)N (M1 x Mp)) = _inf  max {z —ul,ly —ull} < (1+p) |z -yl +e
ueMiNMs



We may let ¢ — 0 and we obtain that for any (x,y) € (B(Z,s) x B(T,s)) N (M x Ma),
d((2,y), 971 (0) N (M1 x Mp)) < (1+p) & —yll = (1 + w)d(0, g(2,y))
=1+ lls@ ) — gz, y)ll,

hence (v) holds.
(v) = (4i) Suppose that there are s,y > 0 such that for any (z,y) € (B(7,s) x B(T,s)) N
(M1 X Mg) s
d((z,y),97"(0) N (M1 x My)) < pd(0, gz, y)).

Then, for © € M1 N B(Z, s), and for any y € Ms N B(T, ),

dlxz, MiN M) = inf |z—ul<
u

- - T,
weM My inf ~max{[lz —ul,lly — ull} < pllz -yl

eMiNM
In conclusion, for any y € Ms N B(Z, ),
d(z, My N M) < pllz —ylf,

hence
d(x, My N Ms) < pd(z, Ma N B(Z, s)).

(v) & (vi) Observe that g=1(0) = h~1(0) and that d(0,g(z,y)) = ||z —y| = d(z,y) =
d(0,d(z,y)) = d(0, h(z,y)). O

Remark 3.4 Notice that (3.1) is exactly the fact that T is a local minimum on My of the function
T = NdMQ (‘7:) - dMlﬂMz(:L‘)'

Since the latter function is (14 p)— Lipschitz, by Clarke’s penalization principle ([3, Proposition
2.4.8]), T is a local minimum (without constraints) of

= pdg, (€) = danyna (2) + (14 1) dar, (2),
which implies that for x around T
danongy () < pdary () + (14 ) day (2) < (1 + ) (dar, (2) + dary (2)) -
This is another argument for (i) = (iv) of the proposition above.

Remark 3.5 The fact that T is a local minimum on My of the function

T = )U’dM2 (33) + LMy — dMlﬂMg (ZL'), (33)

where ¢ is the indicator function, means that the condition (3.1) can be seen as a minimality
condition for a difference function. Necessary and sufficient conditions for it can be devised in
terms of subdifferentials of the involved functions (hence, in our case, in terms of normal cones
of My, Ma, My N My) following the results in [16]. Moreover, in the convex case (that is, both My
and My are convex) the local minimality becomes global minimality, and an equivalent condition in
terms of e—subdifferentials (and e—normal cones) is to be found in [9].



For instance, on Asplund spaces, a well-known consequence of relation (3.2) is a formula for
the Fréchet normal cone of the intersection of sets. But this follows as well when we apply the
generalized Fermat rule to the function (3.3) to get that

0 € 3 (udasy + erry, — danons) (7).

Moreover, since the functions pdyr, + ey, and danv, are finite at T, and édeM2 (Z) = N(Ml N
Ms,Z) N D (0,1) # 0, it follows by the difference calculus rule for the Fréchet subdifferential (1.1)
that R
0e N [a (udag, + tary) (@) — ¥ .
z*eN(M;NM2,Z)ND(0,1)
This means that R
N(M; N My, ®) N D (0,1) C 8 (pudasy, + tar,) (T)

and, since Ly, 1S lower semicontinuous and udyyr, is Lipschitz, one applies the approximate calculus
rule for the Fréchet subdifferential on Asplund spaces to get x. € M1NB(T,e) and y. € MaNB(T,¢)
such that R R R
O (pdat, + eary) (T) C O (pdasy) (ze) + 0 (eary) (ye) +eD(0,1).
Then, R R R
N(M; N My, Z)ND(0,1) C N(My,x:) N D(0, u) + N(My,y:) +eD(0,1).

In particular, by the fact that the involved objects are cones, by adjusting the involved constants
if needed, it follows that for any € > 0, there exist x. € My N B(T,¢) and y. € My N B(T,¢) such
that

N(My N M, ) C N(My,ze) + N(Mz,ye) +eD(0,1).

Remark 3.6 Notice that, for the convex case, the necessity of some metric inequalities for ensuring
the validity of constraints qualification conditions is discussed in [17].

Combining the discussions above, we present two consequences for the systems with multiple
constraints considered in the previous section.

Corollary 3.7 Let g = (g1,92) : X — R? be differentiable, consider T € X such that g1(T) =
92(Z) =0 and Vg1(Z) # 0,Vga(T) # 0. If there exist s > 0, u > 0 such that for allx € B(z,s)NMy,,

d(, Mg, N MgQ) < pd(, M92)7

then
To(M,,7) = {u € X | Vg(@)(u) < 0}

Corollary 3.8 Let g = (g1,92,93) : X — R? be differentiable, consider T € X such that g;(Z) = 0
and Vg;(T) # 0 fori € 1,3. If there exist s,t,pu,y > 0 such that for all x € B(Z,s) N My,

d(z, Mg, N Mgz) < pd(z, Mgz),
and for all x € B(Z,t) N Mg, N My,
d(z, Mg, N Mg, N Mgg) < vyd(z, Mg3),
then
Tp(Mgy, @) ={ue X |Vg(T)(u) <0}.
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We present some illustrative examples.
Example 3.9 1. Let g1, go : R2— R be given by
gi(z,y) =z -y, ga2z,y) =2° —z+y.
Consider the sets
Mleglz{(x,y)€R2|a:§y} and My = My, = {(z,y) YeER? |y <az— 2}

Take (7,7) = 0 € R? and observe that Vg (7,7) = (1,—1) = —Vg2 (7,7) and Mangasarian-
Fromowitz condition holds for these functions individually at (Z,y), while it does not for (g1, g2).
We have

Tp(M;,0) = {(z,y) € R? |2 <y} and Tp(M;,0) = {(z,y) €R* |y <z},

whence
Tp(M;1,0) NT(Ms,0) = {(:c,y) € R? |z = y} .

On the other hand, My N My = {0}, so Tr(M; N Ms,0) = {0}, whence the equality does not
hold. However, the relation (3.1) does not hold either. Indeed, the relation (3.1) would imply the
existence of p > 0 such that for every small > 0,

z<avV2=d((z,z), M N M) < pud((z,z), M) < p |(z,2) = (z,2 — x2)H = pa?,

which is impossible.
2. Let g1, ¢2 : R?>— R be given by

gi(z,y) =z -y, g2(v,y) = —x +y.
Consider the sets
=My, = {(z,y) €R* |z <y}
= My, = {(z,y) eR* |y < z}.

Take (7,7) = 0 € R? and observe that Vg;(7) = (1, —1) = —Vg2(Z) and Mangasarian-Fromowitz
condition holds for these functions individually at (Z,7), while it does not for (g1, g2). We have

Tp(M1,0) = {(z,y) € R? |z <y} and Tp(M>,0) = {(z,y) e R? |y <z},
whence
TB(MlaO) m1—‘173(]\4270) = {($ay) € R2 | T = y} .

On the other hand,
MlmMZZ {(x,y) GRQ |33:y},

Tp(My N Ms,0) = {(z,y) ER® |z =y},

whence the equality does hold. Moreover, it is not difficult to see that the relation (3.1) does hold
as well for small s and p = 1.

11



The last example above shows that the metric condition (3.1) is either strictly weaker than
the global Mangasarian-Fromowitz condition, or independent from it. We do not know which of
these two situations is actually true. The paper [1] contains an example of convex cones for which
equality between tangent cones takes place, while the metric inequality does not, but this example
is not fitted to our situation here.

Nevertheless, the condition (3.1) and the global Mangasarian-Fromowitz condition are only
sufficient for having the equality between the tangent cone to the intersection and the intersection
of tangent cones, as the next example shows.

Example 3.10 Consider g1, g» : R?>— R given by

ztsin? i —y, ifx#£0
gl(:n,y)Z{ 0 if:U:wO

and 491 .
_J x%sin sty ifz#0
92(:17’3/) {0,1f:r:0,

respectively. We have that Vg;1(0,0) = (0,—1) and Vg2(0,0) = (0,1) whence the individual
Mangasarian-Fromowitz conditions hold, while the global one does not. We have that

TB(MQI’ (07 0)) N TB(M927 (07 0)) = TB(Mgl n M927 (07 0))
={(a,0) | a € R}.

Now denote f(z) = z%sin? 1 for any z # 0 and consider, for n € N\ {0}, the number

B 1 /1 n 1 2n+1
€T = —_— —_ =
"ot \n n+1 2mn (n+1)’
and the element
(Tn, f (Tn)) € My, .
Since

M,, A M,, :{(0’0)}U{<k17r’0> \keZ\{O}},

one has that
< d((Tn, f (Tn)) , Mg, N Mg,).

On the other hand,
d((fna f (fn)) 7M!]2) S 2f (fn) ’

whence, (3.1) would imply the existence of a constant p > 0 such that for all n large enough,
4
_ 1 <o 2n +1 Gin? 2mn (n+1) 7
2mn(n + 1) 2mn (n+ 1) 2n+1

4
4 < (2n+1) i sin? <27rn (n+ 1)) .
n3(n+1) 2n +1

Of course, this is impossible since the right-hand term converges to 0 as n — oo.

_ 1
Ty — —
nm

that is
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4 Consequences in optimization

In this section we present some consequences of the metric condition discussed above and we give
as well some other similar conditions that can be used in various contexts.

Consider a scalar function f : X — R and recall that the Hadamard upper directional derivative
of f at T € X in direction u € X is

d f(T,u) = limsupt™ (f(z + tu') — f(2)),

u' —u,t |0

while the Hadamard lower directional derivative of f at Z in direction w is

d_f(z,u) = liminf t *(f(T + t') — £(T)).
u'—u,t |0
In [2] a concept of directional minimum was introduced and studied in the vectorial setting
(see also [7]). We consider this concept here, but, initially, for the sake of simplicity, we restrict
ourselves to the scalar case.

Definition 4.1 Let f : X — R be a function and A C X, L C S(0,1) be nonempty closed sets.
One says that T € A is a local directional minimum point for f on A with respect to (the set of
directions) L if there exists a neighborhood U of T such that for every x € U N AN (T + cone L),

[(@) < f(=).

Proposition 4.2 Let f: X — R be a function, A C X, L C 5(0,1) be nonempty closed sets and
T € A. Suppose that there exist s > 0, u > 0 such that

Ve € B(z,s)NA:d(xz, AN (T + cone L)) < pd(z, T+ cone L). (4.1)

(i) If T is a local directional minimum point for f on A with respect to L, then dy f(Z,u) >0
for alluw € Tg(A,Z)N L.

(ii) Moreover, if X is finite dimensional and d_ f(Z,u) > 0 for all uw € Tp(A,T) N L, then there
exists a > 0 such that T is a local directional minimum point for f (-)+a||- — T|| on A with respect
to L.

Proof. Firstly, observe that, according to Theorem 3.1, the metric assumption imposed ensures
that
Tp(A,T)NTy(T + cone L, ) C Tp(AN (T + cone L), T).

Since, obviously,
Tp(AN(T+ coneL),Z) C Tp(A,Z) NTp(T + cone L, T)
and
Tp(T + cone L,T) = Ty (T + cone L, ) = Tyy(cone L, 0) = cone L,

we actually get
Tp(AN(T+conel),z) =Tp(A,T)Ncone L.

Now the proof of both items is quite standard, but we present it here for the sake of clarity.
(i) Remark that the minimality of T on A with respect to a set of directions L is in fact
the minimality of T on A N (T + cone L) . Therefore, for every u € T(A,Z) NconeL = Tr(AN
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(T 4 cone L), T), there are some sequences (t) | 0, (u,) — u such that for all n € N, T + t,u,, €
UNAN (T + cone L), whence, for n large enough f (Z + t,uy,) > f(Z). Consequently,

dy f(T,u) > limsupt, ! (f(F + toyun) — f(F)) > 0.

n—oo

(ii) Suppose, by way of contradiction, that for every positive integer n there exists =, € AN
(T + cone L) N B(Z,n~!) such that

flan) < f(@) =07 lon — 7]

Then for all n > 1, x,, # T and

o =" (Fan) = 5@) = i~ 717 (£ (74 o =2l 2220 ) = @) ) < o

[ 2n — ||

Since X is finite dimensional, we can suppose, without loss of generality, that (ﬁ) converges

to an element u which clearly is in Tg(A,Z) N L. Therefore

Ty —

- f(@0) < tiwint o~ 71 (7 (74 o, — 7l 2225 ) < @) <o
n—oo | 2n — |
and this is a contradiction. Therefore, the conclusion holds. ]

Remark 4.3 According to Proposition 3.3, one can replace (4.1) by any of the equivalent corre-
sponding conditions.

It is interesting, from our point of view, the fact that metric conditions of the type (3.1) come
into play as weak assumptions to ensure the validity of some penalization principles. Even if all the
conditions in Proposition 3.3 are equivalent, the change of constants is important in the construction
of the penalty function. More details will be given after the next results.

Theorem 4.4 (penalty of an intersection of sets) Let f : X — R be a function and A, B C X
be nonempty, closed sets. Let T € AN B be a local minimum point for f on AN B. Suppose that
(i) there exist € > 0 and £ > 0 such that f is {— Lipschitz on B(T,¢);
(ii) there exist s > 0, > 0 such that for all x € B(T,s) N A,

d(x,ANB) < pd(x, B).

Then T is a local minimum point for f + lud(-,B) on A and a local minimum point (without
constraints) for

fHe( 4 p)d(-, A) + Lud(-, B).
Proof. We prove first that T is a local minimum point on A for
f+lud(-, B).

Let a > 0 be the radius of the ball given by the local minimality of Z. We choose ¢ > 0 such that
0 < min {(1 +u) ta,s,(1+p) ! 5} and z € AN B(Z,d). Since f(z) + lud(z, B) = f(T), we have
to show that

f(@) < f(x) + lpd(z, B).
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If x € AN B(z,d) N B, this is obvious, by the property of . Take x € AN B(Z, ) \ B. By (1),
d(x,ANB) < pd(x, B),
whence, for every p € (0, min{o, e} — (14 p)),
d(x,ANB) < pd(x, B) + p.
This means that there is z, € AN B such that
|2 — zpl| < pd(z, B) +p < pllz — || + p.

But,
lzp =2l < llzp —2ll + lz =T S pé+p+06=0(1+p)+p <minfa,c}.

Consequently, z, € AN BN B(Z,a), whence f(z) < f(z,). Then, by (4),
(@) < fzp) < fz) + Lz —xp|| < f(z) + Lud(z, B) + Lp.

Letting p — 0 we get the desired inequality, whence the claim is proved.
Now, observe that f+£ud(-, B) is locally Lipschitz around = with the Lipschitz constant ¢(1+ ).
We apply the standard Clarke penalization principle and we get the conclusion. ]

Remark 4.5 In fact, the above result is more general than the usual Clarke penalization principle
which corresponds to the case A = B.

We apply this generalized penalty result for getting necessary optimality conditions in the dual
space for directional minima.

Theorem 4.6 Let X be an Asplund space, f : X — R be a function, A C X, L C S(0,1) be
nonempty closed sets and T € A. Suppose that:

(i) T is a local directional minimum point for f on A with respect to L;

(i) there exist € > 0 and ¢ > 0 such that f is {—Lipschitz on B(Z,¢);

(i) there exist s > 0, > 0 such that for all x € B(T,s) N A,

d(x,AN (T +conel)) < pd(x,T + cone L).
Then there are u* € N(A,T),v* € N (cone L,0) with ||u*|| < £(1+ p) and ||v*|| < Lu, such that
—u* —v* € 0f(T).

Proof. Since T is a local directional minimum point for f on A with respect to L, then it is a local
minimum point for f on AN(Z + cone L). Then, on the basis of (i7) and (ii7) we can apply Theorem
4.4 to get that T is a local minimum point for f+¢ (1 + w) d(-, A)+£Lpd(-, T+cone L). Therefore, since
all the functions are locally Lipschitz around T, one can apply the exact subdifferential calculus
rules (see [12, Theorem 3.36]) to get

0€d(f+C(1+p) d(,A) + lud(-,T + cone L)) (7)
C AF@) + £ (1 + ) 9d(-, A) (T) + €udd(-, T + cone L) ().

The conclusion follows. O
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Remark 4.7 The importance of having constants as small as possible is apparent in the conclusion
of Theorem 4.6 in the estimation of the norms of the generalized Lagrange multipliers u* and v*.

Remark 4.8 Observe that if cone L is convez, then N (cone L,0) = L.

We illustrate the above results by the following example.

Example 4.9 Let X := R2, A :=[0,1]*, L := S((0,0),1) N {(z,y) e R?* |y >z >0} . Consider
the function f : R? — R, f(x,y) = 2y — 2. Clearly, (0,0) is a directional minimum point for f on A
with respect to L. Moreover, the assumptions of Theorem 4.6 are satisfied with £ = v/5 and p = 1.
Then 9f(0,0) = {(—1,2)} and there is u* = (0,—1) € N(A,(0,0)), v* = (1,—1) € L~ satisfying
the conclusion.

On the other hand, if we change only the set of directions to

L:=S5((0,0),1)n{(z,y) eR? |y >3-z >0},

then one cannot find u*, v* to satisfy the conclusion, confirming that this time (0,0) is not a
directional minimum point for f on A with respect to L.

In the next result we point out that a metric condition can be imposed as well for a functional
constraint in order to get a penalty result. Let Z be a normed vector space, g : X — Z be a
function and Q) C Z be a pointed closed convex cone. One defines the set-valued map §g: X = Z
given by §(z) = g(z) + Q and one considers g~! (—Q) = g~ (0) as the feasible set.

Theorem 4.10 (penalty for a functional constraint) Let T € g~'(—Q) be a local minimum

of f on g1 (—Q). Suppose that
(i) there exist € > 0 and £ > 0 such that f is {— Lipschitz on B(T,¢);
(ii) there exist s,y > 0 such that for allx € g~ (—Q + B(0,s)) N B (Z, s)

d(z,971(=Q)) < pd(0,§(z) N B(0,s)).
Then (,0) is a local minimum for the function (x,z) — f(x) 4+ Lu|z]| + € (1 + p) d((z, 2),Gr g).

Proof. Denote h: X x Z — R, h(z,z) = f(x) + ¢u||z| . Clearly, h(Z,0) = f(Z) and we show first
that (z,0) is a local minimum on Gr g for h. Thus, we have to show that there is § > 0 such that
for all (z,z) € (B (Z,0) x B(0,§)) N Grg,

f@) < fla) + Lullz]l-

Let « be the radius of the ball given by the local minimality of Z. Take § > 0 such that § <
min {6(1 +u)7 ! sa(l +,u)71} and (z,z) € (B(z,0) x B(0,0)) N Grg. If z € —Q, then by the
property of T,

f@) < fz) < flx) +Lu=].
Suppose that z ¢ —@Q. Then there is ¢ € Q such that z—q = g (x), hence z € B (z,8)Ng (2 —q) C
B(z,5)Ng~' (=Q+ B(0,s)). Now, by (i),

d(z, g7 (~Q)) < pd(0,9(x) N B(0,s)) < 2| -
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Then for every p € (0, min {a,e} — 6 (1 + u)), there is z, € g71(—Q) such that
[z —zpll < pllzll +p < pé+p.
Then
Iy — I < 2y — 2l + 1z — T < 6+ p+ 6= 6 (1 + ) + p < min {a <}
Therefore, by (i),

f(@) < flxp) < fl2) + Lz —zp|| < f2) +Lull2]l + Lp.

For p — 0, we get the claim.
Finally, since h is locally Lipschitz around (Z,0) with constant ¢ (1 + p), we apply the standard
Clarke penalization principle and we get the conclusion. ]

Theorem 4.11 In the notation above, let X, 7 be Asplund spaces and T € g~1(—Q) be a local
minimum of f on g~ *(—Q). Suppose that

(i) there exist € > 0 and ¢ > 0 such that f is {—Lipschitz on B(T,¢);

(ii) there exist s, > 0 such that for all x € g=1 (—=Q + B(0,s)) N B (%, s)

d(z, g7 (=Q)) < pd(0,9(x) N B(0, s)).
Then
—0f(®) N D(0,¢(1+ 1) N D*4(F,0)(Q* N D(0, £u)) # 0.
Proof. Following Theorem 4.10, (Z,0) is a local minimum for the function (z, z) — f(x)+£fu ||z]|+
(14 p)d((x,z),Grg), whence
(0,0) € 0f(7) x {0} 4+ {0} x Lud ||| (0) + £ (1 + p) dd((-,-) , Gr g) (Z,0)..
Then there are z* € 9f(T), z* € D(0,¢u) such that

(—x*,—2%) € N(Grg,(7,0)) and
(2", 25 < £(1+p).-

In particular, this means that

[z*]| < £(1+ p) and
—a* € D*§(z,0) (7).

Taking into account the definition of the limiting normal cone, (—z*, —2z*) can be approached in

¥, —z) elements in the Fréchet normal cone to Gr g

the weak-star topology by some elements (—z}, —z
at points close to (7,0). According to [5, Lemma 3.2], the elements 2} are in Q* and since this set

is weakly-star closed, z* € Q. Therefore, 2* € Q* N D(0, /1) and then we get the conclusion. [

By combining both penalty principles above, we can get optimality conditions for directional
minima under functional constraints.
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Corollary 4.12 In the notation above, let T be a local directional minimum point for f on g~ *(—Q)
with respect to L. Suppose that

(i) there exist € > 0 and ¢ > 0 such that f is {—Lipschitz on B(T,¢);

(ii) there exist s, > 0 such that for all x € g~ (—Q + B(0,s)) N B (%, s)

d(z,97(=Q)) < pd(0,§(z) N B(0, s))
and for all x € B(Z,s) N g 1{(—Q),
d(z, g (—=Q) N (T + cone L)) < pd(z,T + cone L).

Then
—0f(@)ND0, b+ £ (1 + M)Q) N [N (cone L,0) N D(0, £u) + D*§(z,0)(Q1 N D(0,£ (1 + p) u))] # 0.
Proof. Using the assumptions, by Theorems 4.4 and 4.10, successively, T is a minimum point for

f+lud(-, (T + cone L))

on ¢g~1(—Q) and (7, 0) is unconstrained minimum for
(,2) = f(x) + bpd(z, (T + cone L)) + € (1 + p) p|z]| + € (1 + p)*d((w, 2) , Gr g).

Employing again the limiting calculus rule, we get that there are z* € 9f(Z),u* € N (cone L,0) , z* €
Z* with u*|| < €, ||z < €1+ p) s [|2*]| < b+ £ (1 + p)* and

(—a* —u*,—2z") € N(Grg,(z,0)).

As above, z* € QT and summing up we have the conclusion. O

Finally, we give some optimality conditions for a concept of directional minimum with respect
to two sets of directions for vectorial functions (see [7]). One needs an auxiliary result.

Lemma 4.13 Let X,Y be Banach spaces, f : X — Y a continuously differentiable function,
M C Sy a closed and nonempty set, and T € X. Suppose that one of the following sets of
conditions holds:

(i) cone M is convex and there exists ug € X such that V f(Z)(ug) € — int(cone M);

(ii) the map g : X XY — Y given by g(x,y) = f(x) —y is metrically subregular at (Z, f(),0)
with respect to X x f~1(f (%) — cone M).

Then

Ts(f~1(f (@) — cone M), ) = Vf(T) "} (— cone M). (4.2)

Proof. Provided that f is continuously differentiable, it is always true that Tg(f~'(f(z) —
cone M),z) C Vf(x)"!(—coneM). Indeed, for an arbitrary v € Tg(f '(f(Z) — cone M), T),
there exist (¢,) | 0 and (u,) — u such that f(T + tpuy,) € f(T) — cone M for all n. Since f is
continuously differentiable at T, this means that there exists a function o : X — Y such that
limy, 0 (T + h) = a(z) = 0 and

@+ tpun) = f(T) + tnVf(T)(un) + tna(T + tnun)[un-

Therefore,
tnVf(T)(upn) + tna(T + tpuy)||un|| € — cone M,
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and from here, dividing by t, and passing to the limit, one gets u € V f(Z)~!(— cone M).

If the condition from (4¢) holds, the conclusion is granted by [4, Theorem 3.1].

Suppose now that we are under the assumptions from (i). Let (¢,,) be an arbitrary sequence of
positive numbers converging to 0, and set u, := ug. Using the differentiability of f, we can write

F(@ 4 thun) =F(T) + t, V(T)(un) + tna(T + toun) || un ||
=f(@) + ta[V (@) (u0) + (T + tnuo)|uoll],

where a : X — Y is such that lim a(Z + t,u,) = a(z) = 0. Therefore, since Vf(T)(ug) €
n—oo

— int(cone M), we have that for all n large enough, f(Z + t,ug) € f(T) — cone M, that is ug €
Ty(f~'(f(Z) — cone M), 7).
Consider now v € X such that V f(Z)(v) € —cone M, and A € (0,1). Then

V(@) (Aug + (1 — X)v) € —(int(cone M) + cone M) = — int(cone M).
Hence, from the previous step,
Mug + (1= N € Ty (fH(f(Z) — cone M), T).

Passing to the limit with A — 0, and taking into account that the adjacent cone is closed, we get
that v € Ty (f~1(f (%) — cone M), %) C Tp(f~1(f(Z) — cone M), Z), and this completes the proof.
O

We recall now the Gerstewitz (Tammer) scalarization functional (see, for instance [8, Section
2.3]).

Lemma 4.14 Let K C Y be a closed convex cone with nonempty interior. Then for every e €
int K, the functional s, : Y — R given by

se(y) =inf{t e R|tecy+ K}
is continuous and sublinear. Moreover, for everyt € R,
{y €Y |se(y) <t} =te—int K.
We give the definition of efficiency from [7].

Definition 4.15 Let X and Y be normed vector spaces, K C Y a closed ordering cone with
nonempty interior, f : X —Y, and AC X, L C Sx, M C Sy closed sets. One says that T € A is
a weak local directional Pareto minimum point for f with respect to the sets of directions L and M
on A if there exists a neighborhood U for T such that

[f(ANUN(Z+ cone L)) N (f(x) — cone M)] — f(Z)]N (—int K) = 0.
We are now able to present the necessary optimality conditions.

Theorem 4.16 Let X, Y be Banach spaces, f : X — Y a continuously differentiable function,
K CY a closed convex ordering cone with nonempty interior, A C X, L C Sx and M C Sy closed
and nonempty sets, and T € A. Assume there exist s, u,t,y > 0 such that

d(x, AN (Z + conel)) < pd(x, T+ cone L), Vz € B(z,s) N A,
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and
d(zx, AN (T + coneL) N f~1(f(T) — coneM)) < vd(z, f (f(Z) — coneM)),

Va € B(T,t) N AN (T + cone L).

Suppose also that either (i) or (ii) from Lemma 4.13 hold, and T is a weak local directional Pareto
minimum for f on A with respect to L and M.
Then
VF(@)(u) ¢ —int K, Yu € Tp(A,Z) NconeL NV f(Z)"!(—coneM).

Proof. First, we observe that the metric assumptions ensure the equality
Ts(AN(Z+cone L)Nf 1 (f(Z)—cone M), Z) = Tg(A,T)NT5(T+cone L, Z)NTs(f~(f(Z)—cone M), T).

But T5(% + cone L, ) = cone L and since we are under assumptions (i) or (i) from Lemma 4.13,
we also have

Ts(f~1(f (@) — cone M), %) = Vf(T) " (— cone M).

Therefore,
Te(AN (T +cone L) N f~H(f(Z) — cone M), Z) = Tp(A,Z) Ncone LNV £(Z) " (— cone M). (4.3)
The minimality of T means there exists a neighborhood U for = such that
[f(ANUN (T + conel)) N (f(Z) — coneM)] — f(z)] N (—int K) = 0.

That is, for every e € int K and every z € ANU N (T + cone L) N f~1(f(Z) — cone M), we have
se(f(x)—f(x)) > 0since f(x)— f(T) ¢ —int K. We can now see T as a local minimum point for the
scalar function g : X — R given by g(x) = s.(f(z) — f(Z)) on AN(T+cone L)N f~1(f(Z)—cone M).
Note that g(Z) = s.(0) = 0 because s, is sublinear.
Consider now u € Tp(A,Z) N cone(L) NV f(Z)~1(— cone M). There exist (t,) | 0 and u,, — u
such that
T+ tpuy, € AN (T + conel) N f~L(f () — coneM),

due to (4.3). Moreover, since T + t,u, — T, we also have that T + t,u,, € U for n sufficiently large.
Hence,
9(T + thun) = g(T) & se(f(T + thun) — f(T)) =20,

for all n sufficiently large. There exists a function o : X — Y such that limy_,g a(Z+h) = a(z) = 0,
so that we can write
Se(tn V f(T)(up) + tna(T + tpuy)||un|) > 0.

Dividing by t,, and passing to the limit, we get s.(V f(Z)(u)) > 0, that is Vf(Z)(u) ¢ —int K. The
proof is complete. O

5 Concluding remarks

The type of metric inequalities on sets that we discuss and apply in this work is helpful in at least
two aspects related to optimization problems. First of all, it is an appropriate replacement for some
constraint qualification conditions when a new constraint is added. Secondly, it is naturally involved
in penalization results when several constraints are considered. By their nature, as underlined, these
metric inequalities are rather weak and this offers the perspective of applying the general principle
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behind the results in this work to other research directions. Therefore, the metric relations we
study here can be extended as well for deriving calculus rules for tangent cones by changing the
conditions based on subregularities of mappings initiated in [4]. Moreover, penalization procedures
for vectorial problems with multiple constraints based on results such as those in [18] and [6] are
to be envisaged in future works.
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