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Romania

Michael Röckner
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Abstract

One proves the uniqueness of distributional solutions to nonlinear
Fokker–Planck equations with monotone diffusion term and derive as
a consequence (restricted) uniqueness in law for the corresponding
McKean–Vlasov stochastic differential equation (SDE).
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1 Introduction

Consider the nonlinear Fokker–Planck equation

ut −∆β(u) + div(b(x, u)u) = 0 in D′((0,∞)× Rd),

u(0, x) = u0(x),
(1.1)

where β : R→ R and b : Rd × R→ Rd satisfy the following assumptions
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(i) β(0) = 0, β ∈ C1(R), and

γ0|r1 − r2|2 ≤ (β(r1)− β(r2))(r1 − r2), r1, r2 ∈ R, (1.2)

where 0 < γ0 < ∞.

(ii) bi ∈ Cb(Rd), bi(x, 0) ≡ 0, x ∈ Rd, i = 1, 2, ..., d,

sup{|bi
r(x, r)|; x ∈ Rd, i = 1, 2, ..., d, |r| ≤ M} ≤ CM , ∀M > 0,

and, for
δ(r) := sup{|bx(x, r)|; x ∈ Rd},

we have δ ∈ Cb(R).

Here

b(x, u) = {bi(x, u)}d
i=1 and bi

r =
∂bi

∂r
, bx =

{∇xb
i(x, ·)}d

i=1
.

Equation (1.1) is relevant in statistical mechanics, kinetic theory as well in
theory of stochastic differential equations.

By a distributional solution (in the sense of Schwartz) with initial condi-
tion u0 ∈ L1 we mean a function u : [0,∞) → L1(Rd) such that (u(t, ·)dx)t∈[0,T ]

is narrowly continuous, that is,

lim
t→s

∫

Rd

u(t, x)ψ(x)dx =

∫

Rd

u(s, x)ψ(x)dx, ∀ψ ∈ Cb(Rd), s ≥ 0, (1.3)

∫ ∞

0

∫

Rd

(u(t, x)ϕt(t, x) + β(u(t, x))∆ϕ(t, x) (1.4)

+b(x, u(t, x))u(t, x) · ∇xϕ(t, x))dt dx = 0,

∀ϕ ∈ C∞
0 ((0,∞)× Rd)

u(0, x) = u0(x), a.e. x ∈ Rd. (1.5)

(In the following, we shall use the notation b∗(x, u) = b(x, u)u.)
The existence of a weak (generalized) solution to the Fokker–Planck equa-

tion (1.1) which under the above assumptions is also a distributional solution,
was studied under different sets of hypotheses on β and b in the authors works
[2]–[4]. For instance, in [2] it was proved, in particular, that, if (i)–(ii) hold

and, in addition, for Φ(u) ≡ β(u)
u

, u ∈ R, we have Φ ∈ C2(R), then there is a
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mild solution u ∈ C([0,∞); L1(Rd)) for each u0 ∈ L1(Rd). The mild solution
u is defined as

u(t) = lim
h→0

uh(t) in L1(Rd), ∀t ≥ 0,

where uh is defined by the finite difference scheme

uh(t) = ui
h for t ∈ [ih, (i + h)h], i = 0, 1, ..., Nh = T,

ui+1
h − h∆β(ui+1

h ) + h div(b(x, ui+1
h )ui+1

h ) = ui
h in D′(Rd),
i = 0, 1, ...,

u0
h = u0.

(1.6)

Moreover, S(t)u0 = u(t), t ≥ 0, is a strongly continuous semigroup of nonex-
pansive mappings in L1(Rd) which leaves invariant the set P of all probability
densitis functions, that is,

P =

{
ρ ∈ L1(Rd); ρ ≥ 0, a.e. on Rd,

∫

Rd

ρ dx = 1

}
.

The idea of the proof is to represent equation (1.1) as the Cauchy problem
in the space L1(Rd)

du

dt
+ Au = 0, t ≥ 0,

u(0) = u0,

(1.7)

where A is an m-accretive realization of the operator u → −∆β(u)+div(b(x, u)u)
in the space L1(Rd). Then, by the Crandall & Liggett existence theorem (see
[1], p. 131), it follows the existence of a unique mild solution u which is
defined by (1.5)-(1.6).

In [5], it is proved the existence of a generalized solution in sense of (1.6) in
the special case where 0 < γ ≤ β′(r) ≤ γ1, ∀r ∈ R, and b(x, u) ≡ D(x)b(u),
D = −∇Φ, Φ ∈ C1(Rd), lim

|x|→∞
Φ(x) = +∞. (This is the nondegenerate-

conservative case.) One proves, in addition, that if b(r) ≥ b0 > 0, ∀r ≥ 0,
and

γ1∆Φ− b0|∇Φ|2 ≤ 0 in Rd,

then is true for equation (1.1) the so called H-theorem, that is,

lim
t→∞

u(t) = u∞ in L1(Rd),
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for u0 ∈ P ∩M, where u∞ is the unique solution in M∩P to the correspon-
ding steady state equation. Here, M =

{
u ∈ L1(Rd);

∫
Rd Φ(x)u(x)dx < ∞}

.
In [4], it is proved for u0 ∈ L1(Rd) the existence of a generalized (mild)
solution u ∈ C([0,∞); L1(Rd) in the (eventually) degenerate case, where

β′ ≥ 0, D ∈ L2(Rd) ∩ L∞(Rd), div(D) ∈ L∞(Rd),

and b ∈ C1(R) is bounded, nonnegative and b ≡ const. if (div D)− 6≡ 0 or β
is not strictly increasing.

Moreover, if β ∈ C2(R), β′(r) ≥ a|r|α−1, β(0) = 0, where α ≥ 1, d ≥ 3,
a > 0, and

D ∈ (L2∩L∞)(Rd;Rd), div D ∈ L∞(Rd), div D ≥ 0, b ∈ Cb(R)∩C1(R), b ≥ 0,

then the existence results extends to all measure initial data u0 ≥ 0. More
precisely, there is a distributional solution u = u(t, x) to (1.1) which has a
σ(Mb, Cb)-continuous version on (0,∞). (Here Mb is the space of bounded
Radon measures on Rd.)

It should be emphasized that in all the situations presented above the
mild (generalized) solution u to (1.1) is shown to be unique in the class of
mild solutions defined by (1.6), but not in the class of distributional solutions
defined by (1.3)-(1.5). The uniqueness of distributional solutions u in (1.1)
remains an important objective for its implications, which so far was fulfilled
for some special classes of porous media equations only ([4], [6]) and in [7]
for a special class of Fokker–Planck equations.

Here, we shall prove under hypotheses (i), (ii) the uniqueness for (1.1) in
the class of distributional solutions and derive from this result the uniqueness
in law of solutions to McKean–Vlasov SDE

dX(t) = b(X(t), u(t,X(t)))dt +
1√
2

(
β(u(t,X(t))

u(t,X(t))

) 1
2

dW (t). (1.8)

Notation. Denote by Lp(Rd) = Lp the space of p-summable functions on Lp,
with the norm denoted |·|p. By Hk(Rd) = Hk, k = 1, 2, and H−k(Rd) = H−k,
we denote the standard Sobolev spaces on Rd and by Cb(Rd) the space of
continuous and bounded functions on Rd. By Ck(Rd) we denote the space of
continuously differentiable functions on Rd of order k, by C1

b (Rd) the space{
u ∈ C1(Rd);∇x ∈ Cb(Rd), j = 1, ..., d

}
. We also set

∇xu =

{
∂u

∂xi

}d

i=1

, ∆u =
d∑

i=1

∂2u

∂x2
i

.
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The spaces of continuous and differentiable functions on (0, T )× Rd are de-
noted in a similar way and we shall simply write

C1
b (Rd) = C1

b , Ck(Rd) = Ck, k = 1, 2.

The scalar product in L2 is denoted 〈·, ·〉2 and by H−1〈·, ·〉H1 the pairing be-
tween H1 and H−1. Of course, on L2×L2 this coincides with 〈·, ·〉2 . The scalar
product 〈·, ·〉−1 on H−1 is taken as

〈u, v〉−1 = ((I −∆)−1u, v)2, ∀u, v ∈ H−1 (1.9)

with the corresponding norm

|u|−1 = (〈u, u〉−1)
1
2 , u ∈ H−1. (1.10)

By D′((0,∞)×Rd) and D′(Rd) we denote the space of Schwartz distributions
on (0,∞) × Rd and Rd, respectively. If X is a Banach space, we denote
by W 1,2([0, T ];X ) the infinite dimensional Sobolev space {y ∈ L2(0, T ;X );
dy
dt
∈ L2(0, T ;X )}, where d

dt
is taken in the sense of vectorial distributions.

We also set, for each z ∈ C1(Rd × R),

zr(x, r) =
∂

∂r
z(x, r), zx = ∇xz(x, r).

We shall denote the norms on Rd and R by the same symbol | · |.

2 The main result

The next result is a uniqueness theorem for distributional solutions u to (1.1).
In the special case b ≡ 0, such a uniqueness result for(1.1) was established
earlier in [4] for continuous and monotonically nondecreasing functions β.
(See, also, [9].)

Theorem 2.1. Let T > 0 and let conditions (i)–(ii) on β and b hold. Then,
for each u0 ∈ L∞ ∩ L1, the Fokker–Planck equation (1.1) has at most one
distributional solution u ∈ L∞((0, T ); L1) ∩ L∞((0, T )× Rd).

Proof. Let u1, u2 ∈ L∞(0, T ; L1) ∩ L∞((0, T ) × Rd) be two distributional
solutions to (1.1) and let u = u1 − u2. We have

ut −∆(β(u1)− β(u2)) + div(b∗(x, u1)− b∗(x, u2)) = 0
in D′((0,∞)× Rd)

u(0, x) = 0.

(2.1)
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(Here, b∗(x, r) = b(x, r)r, ∀x ∈ Rd, r ∈ R.)
It should be mentioned that, by (1.1), it follows that ui, β(ui) ∈ L2((0, T ); L2),

i = 1, 2, and, therefore, u ∈ W 1,2([0, T ]; H−2).
Consider the operator Γ : H−1 → H1 defined by

Γu = (1−∆)−1u, u ∈ H−1(Rd)

and note that Γ is an isomorphism of H−1 onto H1, and also that Γ ∈
L(H−2, L2). Since ui ∈ L2(0, T ; L2), i = 1, 2, it follows that y = Γu ∈
L2(0, T ; H2) ∩W 1,2([0, T ]; L2) and so, by (2.1), we have

dy

dt
− Γ∆(β(u1)− β(u2)) + Γ div(b∗(x, u1)− b∗(x, u2)) = 0,

a.e. t ∈ (0, T ),
y(0) = 0,

(2.2)

where dy
dt
∈ L2(0, T ; L2). (We note that here dy

dt
is taken in the sense of L2-

valued vectorial distributions on (0, T ) and so y : [0, T ] → L2 is absolutely
continuous.) Hence, u : [0, T ] → H−2 is absolutely continuous.

Now, we take the scalar product in L2 of (2.2) with u = u1 − u2. Taking
into account that

〈
dy

dt
(t), y(t)

〉

2

=
1

2

d

dt
|y(t)|22, a.e. t ∈ (0, T ),

we get, by (1.9)–(2.2) that

1

2

d

dt
|u(t)|2−2 + 〈β(u1)− β(u2), u1 − u2〉2 = 〈Γ(β(u1)− β(u2)), u1 − u2〉2
−〈Γ div((b∗(x, u1)− b∗(x, u2)), u1 − u2〉2 , a.e. t ∈ (0, T ),

where | · |−2 is the norm of H−2. By (1.2), this yields

1

2

d

dt
|u(t)|2−2 + γ0|u(t)|22 ≤ 〈β(u1(t))− β(u2(t)), u1(t)− u2(t)〉−1

−〈div((b∗(x, u1(t))− b∗(x, u2(t))), u1 − u2〉−1 .

(2.3)

We note that
|Γf |2 ≤ |f |2, ∀f ∈ L2,

and, therefore,
|f |−1 ≤ |f |2, ∀f ∈ L2. (2.4)

6



We also have
|div F |−1 ≤ 2|F |2, ∀F ∈ (L2)d. (2.5)

This yields

| 〈β(u1)− β(u2), u1 − u2〉−1 | ≤ |β(u1)− β(u2)|2|u|−1

≤ βM |u|2|u|−1 ≤ βM |u|
3
2
2 |u|

1
2
−2

(2.6)

and ∣∣〈div (b∗(x, u1)− b∗(x, u2)), u1 − u2〉−1

∣∣
≤ 2|(b∗(x, u1)− b∗(x, u2))|2|u1 − u2|−1

≤ 2(|b|∞ + bM |u1|∞)|u|2|u|−1

≤ 2(|b|∞ + bM |u1|∞)|u|
3
2
2 |u|

1
2
−2.

(2.7)

where M = max{|u1|∞, |u2|∞) and

βM = sup{β′(r); |r| ≤ M},

bM = sup

{ |b(x, u1)− b(x, u2)|
|r1 − r2| ; x ∈ Rd, |r1|, |r2| < M

}

≤ sup{|br(x, r)|; |r| ≤ M, x ∈ Rd}.

(Here, we have used the interpolation inequality |u|−1 ≤ |u|
1
2
2 |u|

1
2
−2.)

By (2.3)–(2.7), we get

1

2

d

dt
|u(t)|2−2 + γ0|u(t)|22 ≤ (βM + 2(|b|∞ + bM |u1|∞)|u(t)|

3
2
2 |u(t)|

1
2
−2,

a.e. t ∈ (0, T ),

where |b|∞ = sup{|b(x, r)|; x ∈ Rd, r ∈ R}. This yields

d

dt
|u(t)|2−2 ≤ C|u(t)|2−2, a.e. t ∈ (0, T ).

Since u : [0, T ] → H−2 is absolutely continuous and narrowly continuous, we
infer that |u(t)|−2 = 0, ∀t ∈ [0, T ], and so u ≡ 0, as claimed. ¤

As mentioned earlier, under hypotheses (i)–(ii), if Φ ∈ C2, where Φ(u) ≡ β(u)
u

,
u ∈ R, then the Fokker–Planck equation (1.1), for each u0 ∈ L1, has a unique
mild solution u ∈ C([0,∞); L1). This mild solution is also easily checked to
be a distributional solution to (1.1). As regards this solution, we also have
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Proposition 2.2. Assume that (i)–(ii) hold, and that, for Φ(u) ≡ β(u)
u

,

(iii) Φ ∈ C2(Rd).

Then, for each u0 ∈ L1 ∩ L∞, the mild solution u to (1.1) satisfies also

u ∈ L∞((0, T )× Rd), ∀T > 0. (2.8)

Proof. We rewrite (1.1) as

(u− |u0|∞ − α(t))t −∆(β(u)− β(|u0|∞ + α(t)))

+div(b∗(x, u)− b∗(x, |u0|∞ + α(t)))

= −div(b∗(x, |u0|∞ + α(t)))− α′(t) ≤ 0 in (0,∞)× Rd,

(2.9)

where α ∈ C1([0,∞)) is chosen in such a way that

α′(t) + sup{|bx(x, |u0|∞ + α(t))|; x ∈ Rd}(|u0|∞ + α(t)) = 0, t ∈ (0, T ),

α(0) = 0.
(2.10)

We may find α of the form α = η−|u0|∞, where η is a solution to the equation

η′ − δ(η)η = 0, t ≥ 0,

η(0) = |u0|∞,
(2.11)

δ(r) = sup{|bx(x, r)|; x ∈ Rd}, r ∈ R. Clearly, (2.11) has such a solution
η ∈ C1([0,∞)), η ≥ 0, on [0,∞) because δ ∈ Cb(R).

Formally, if we multiply (2.9) by sign(u− |u0|∞ − α)+, integrate over Rd

and use the monotonicity of β, we get by (2.5) that

d

dt
|(u(t)− |u0|∞ − α(t))+|1 ≤ 0, a.e. t ∈ (0, T ). (2.12)

This yields u(t) ≤ |u0|∞ + α(t), ∀t ≥ 0, and similarly it follows that u(t) ≥
−|u0|∞ − α(t). Hence, u ∈ L∞((0, T )× Rd), as claimed.

The above formal argument can be made rigorous if u is a strong solution
to (1.1) (which is not the case here). Then (see the detailed argument in [2],
[4], [5])

lim
δ→0

1

δ

∫

[0<(β(u)−β(|u0|∞+α(t))+)≤δ]

|b∗(x, u)− b∗(x, |u0|∞ + α(t))| |∇u|dx

= lim
δ→0

1

δ

∫

[0<(β(u)−β(|u0|∞+α(t))+)≤δ]

(|b(x, u)− b(x, |u0|∞ + α(t))| |u|

+|b(x, |u0|∞ + α(t))| |u− |u0|∞ − α(t)|)|∇u|dx = 0, ∀t ∈ (0, T ),

(2.13)
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which is true if ∇u ∈ L2(0, T ; L2) and b(x, ·) ∈ Lip(R) uniformly in x (which
is the case if br ∈ Cb(Rd × R)). In order to be in such a situation, we
approximate (1.1) by

ut −∆(β(u) + εβ(u) + div(bε(x, u)u)) = 0 in (0, T )× Rd,

u(0, x) = u0(x),
(2.14)

where ε > 0 and bε ∈ C1
b (Rd × R) is a smooth approximation of b. (For

instance, bε = b ∗ ρε, where ρε is a standard mollifier.) Then, as proved
earlier in [2], [3], [5], equation (2.14) has a unique solution uε ∈ L2(0, T ; H1)∩
C([0, T ]; L1) ∩ W 1,2([0, T ]; H−1) and uε → u in C([0, T ]; L1) as ε → 0. An
easy way to prove this is to apply the Trotter–Kato theorem (see [1], p. 169)
to the family of m-accretive operators in L1

Aεu = −∆β(u) + εβ(u) + div(bε(x, u)u),

D(Aε) = {u ∈ L1;−∆β(u) + εβ(u) + div(bε(x, u)u) ∈ L1}.
(See the argument in [5].) Then, we replace (2.9) by

(uε − |u0|∞ − α(t))t −∆(β(uε)− β(|u0|∞ + α(t)))

+ε(β(u)− β(|u0|∞ + α(t))) + div(b∗ε(x, uε)− b∗ε(x, |u0|∞ + α(t))

= −b∗ε(x, |u0|∞ + α(t))− α′(t)− εβ(|u0|∞ + α(t)) ≤ 0,

a.e. in (0, T )× Rd,

(2.15)

where b∗ε(u) = bε(u)u.
Let Xδ ∈ Lip(R) be the following approximation of the signum function

Xδ(r) =





1 for r ≥ δ,

r

δ
for |r| < δ,

−1 for r < −δ,

where δ > 0. If we multiply (2.15) by Xδ((β(uε) − β(|u0|∞ + α))+) and
integrate over Rd, we get
∫

Rd

(uε − |u0|∞ − α)tXδ((β(uε)− β(|u0|∞ + α))+)dx

≤ 1

δ

∫

[0<(β(uε)−β(|u0|∞+α))+≤δ]

(b∗(x, uε)uε − b∗ε(x, |u0|∞ + α)) · ∇uε dx,

∀t ∈ (0, T ),
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because β is monotonically increasing and

∇(β(uε)− β(|u0|∞ + α) · ∇Xδ((β(uε)− β(|u0|∞ + α))+) ≥ 0 in (0, T )× Rd.

Then, by (2.13), we get, for δ → 0,
∫

Rd

(uε − |u0|∞ − α(t))+
t dx ≤ 0, ∀t ∈ (0, T ),

and this yields

uε(t, x)− |u0|∞ − α(t) ≤ 0, a.e. on (0, T )× Rd,

and so, uε ≤ |u0|∞+α, a.e. on (0, T )×Rd. Then, we pass to the limit ε → 0
to get the claimed inequality. ¤

By Theorem 2.1 and Proposition 2.2, we therefore get the following exis-
tence and uniqueness result for (1.1).

Theorem 2.3. Under hypotheses (i)–(iii), for each u0 ∈ L1 ∩ L∞, equation
(1.1) has a unique distributional solution

u ∈ L∞((0, T ); L1) ∩ L∞((0, T )× Rd), ∀T > 0. (2.16)

3 The uniqueness of the linearized equation

Consider a distributional solution of the linearized equation corresponding
to (1.1), that is,

vt −∆(Φ(u)v + div(b(x, u)v)) = 0 in D′((0,∞)× Rd),

v(0, x) = v0(x),
(3.1)

where u ∈ L∞((0, T )× Rd), ∀T > 0. By (i)–(ii), we have

b(x, u), Φ(u) =
β(u)

u
∈ L∞((0,∞)× Rd).

Moreover, we have

Φ(u) ≥ γ0 > 0, a.e. in (0,∞)× Rd. (3.2)

In the following, we denote Φ(u(t, x)) by Ψ(t, x), (t, x) ∈ (0,∞)× Rd.
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Theorem 3.1. (Linearized uniqueness) Under hypotheses (i)–(ii), for
each v0 ∈ L1 ∩ L∞ and T > 0, equation (3.1) has at most one distributional
solution v ∈ C([0, T ]; L1) ∩ L∞((0, T )× Rd).

Proof. We shall proceed as in the proof of Theorem 2.1. Namely, we set
v1 − v2 = v for two solutions v1, v2 of (3.2) and get

vt −∆(Ψv) + div(b(x, u)v) = 0, a.e. t ∈ (0, T ),

v(0) = 0.
(3.3)

For y = Γv, we get

d

dt
y − Γ∆(Ψv) + Γ div(b(x, u)v) = 0

y(0) = 0

(3.4)

and multiplying scalarly in L2 with v, we get as above that

1

2

d

dt
|v(t)|2−2 + γ0|v(t)|22 ≤ |Ψ|∞|v(t)|−2|v(t)|2

+|b|∞|v(t)|2|v(t)−2 ≤ (|Ψ|∞ + |b|∞)|v(t)|
3
2
2 |v(t)|

1
2
−2,

a.e. t ∈ (0, T ).

(3.5)

This yields
d

dt
|v(t)|2−2 ≤ |v(t)|2−2 a.e. t ∈ (0, T ),

and, therefore, v ≡ 0, as claimed.

4 Uniqueness in law of the McKean–Vlasov

stochastic differential equations (SDEs)

Consider for T ∈ (0,∞) and u0 ∈ L1 ∩ L∞ the McKean–Vlasov stochastic
differential equation (SDE)

dX(t) = b(X(t), u(t,X(t)))dt +
1√
2

(
β(u(t,X(t)))

u(t,X(t))

) 1
2

dW (t),

0 ≤ t ≤ T,
u(0, ·) = ξ0,

(4.1)
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on Rd. Here, W (t), t ≥ 0, is an (Ft)-Brownian motion on a probability space
(Ω,F ,P) with normal filtration Ft, t ≥ 0, ξ0 : Ω → Rd is F0-measurable such
that

P ◦ ξ−1
0 (dx) = u0(x)dx,

and u(t, x) =
dLX(t)

dx
(x) is the Lebesgue density of the marginal law LX(t) =

P◦X(t)−1 of the solution process X(t), t ≥ 0. Here, a solution process means
an (Ft)-adapted process with P-a.s. continuous sample paths in Rd solving
(4.1).

Theorem 4.1. Let 0 < T < ∞ and let the above conditions (i)–(ii) on b

and β hold. Let X(t), t ≥ 0, and X̃(t), t ≥ 0, be two solutions to (4.1) such
that, for

u(t, ·) :=
dLX(t)

dx
, ũ(t, ·) :=

dLX̃(t)

dx
,

we have
u, ũ ∈ L∞((0, T )× Rd). (4.2)

Then X and X̃ have the same laws, i.e., P ◦X−1 = P ◦ X̃−1.

Proof. By Itô’s formula, both u and ũ satisfy the (nonlinear) Fokker–Planck
equation (1.1) in the sense of Schwartz distributions. Hence, by Theorem 2.1,

u = ũ. Furthermore, again by Itô’s formula, P ◦X−1 and P ◦ X̃−1 satisfy the
martingale problem with the initial condition u0dx for the linear Komogorov
operator

Lu := Φ(u)∆ + b(·, u) · ∇,

where Φ(u) = β(u)
u

, u ∈ R. Hence, by Theorem 3.1, the assertion follows by
Lemma 2.12 in [10].

Here, for s ∈ [0, T ], the set R[s,T ], which appears in that lemma, is chosen
to be the set of all narrowly continuous, probability measure-valued solutions
of (3.1) having for each t ∈ [s, T ] a density v(t, ·) ∈ L∞ with respect to
Lebesgue measure such that v ∈ L∞((0, T )× Rd). ¤

Remark 4.2. We note that, by the narrow continuity, (4.2) implies that, for
every t ∈ [0, T ], u(t, ·), ũ(t, ·) ∈ L∞. This fact was used in the above proof.

As regards the probabilistic representation u = ∂LX

∂x
of solutions u to

the Fokker–Planck equation (1.1) via the McKean-Vlasov equation (4.1), we
mention also the works [1], [3], [4], [6]. For general results involving the
superposition principle, we refer to [10].
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