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Nr. 06-2020



INTERNAL CONTROLLABILITY OF PARABOLIC

SYSTEMS WITH STAR AND TREE LIKE COUPLINGS

CĂTĂLIN-GEORGE LEFTER AND ELENA-ALEXANDRA MELNIG

Abstract. We consider systems of parabolic equations coupled in zero
order terms in a star-like or a tree-like shape, with an internal control
acting in only one of the equations. We obtain local exact controllability
to the stationary solutions of the system under hypotheses concerning
the supports of the coupling coefficients. The key point is establishing
appropriate Carleman estimates for the adjoint to the linearized system.

1. Introduction

In this paper we consider semilinear systems of parabolic equations cou-
pled in zero order terms. We are interested in controllability of such systems
to stationary solutions by only one control distributed in a subdomain and
acting in only one of the equations. The key hypotheses insuring local con-
trollability refer to the structure of the couplings, which describe either a
star or a tree type graph, and to the support of the coupling functions or,
in the linear case, to the support of the coupling coefficients.

The strategy for proving the controllability result relies on the lineariza-
tion of the nonlinear system around a stationary state. The key step is
obtaining the null controllability for this linear system by using an observ-
ability inequality for the adjoint system. This observability inequality is
consequence of an appropriate global Carleman estimate. This in turn is
obtained by combining Carleman estimates for each of the equation, but
relying on diferent auxiliary functions, which are in a particular order rela-
tion, made possible by the special structure of the system. The idea of using
different auxiliary functions in Carleman estimates is inspired by the work
of G.Olive [14] concerning controllability of parabolic systems with controls
acting in different subdomains.

Passing from the linearized system to the nonlinear one needs an L∞

framework for the controlability of the linear system because the Carleman
estimates we obtain are sensitive to zero order perturbations of the system.
More regularity of the controls in the linearized problem is obtained as in
the work of V.Barbu [5] (see also [6]) by using regularizing properties of
the parabolic flow in a bootstrap argument. This allows an approach to
the controllability of the nonlinear system by a fixed point argument, based
on Kakutani theorem, as in work of J.-M. Coron, S.Guerrero and L.Rosier
[6] or [4]. In fact the proof of this step follows the same lines as in [6]
where the return method is used and the linearization is performed around
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2 C.G. LEFTER AND E.A. MELNIG

a particular trajectory, such that the linearized system is well coupled; this
also is a situation where an L∞ framework for the controllability is necessary
by the same reason as in the case we are considering.

Global Carleman estimates are by now a classical tool in proving ob-
servability inequalities, and they were established in the context of control-
lability for parabolic equation O.Yu.Imanuvilov (see O.Yu.Imanuvilov and
A.Fursikov [9]). Since then this type of estimates was extensively developed,
refined and used in other areas such as stabilization or inverse problems.

The study of controlled systems of parabolic equations, with fewer con-
trols than equations, needs appropriate Carleman estimates for the adjoint
system. These estimates usually involve partial observations. We recall the
study of cascade like systems of parabolic equations, with one control and
space depending couplings, in the paper of Luz de Teresa and M.Gonzáles-
Burgos [10]. In the case of zero order couplings with constant or time de-
pendent coupling coefficients there is an extended interest on obtaining alge-
braic conditions of Kalman type for controllability; in this direction we cite
the papers of F.Ammar-Khodja, A.Benabdallah, C.Dupaix and M.Gonzáles-
Burgos [2, 1] or the work of F.Ammar-Khodja, F.Chouly and M. Duprez [3].
Observability estimates for linear systems (not only parabolic) coupled with
constant coupling coefficients in the dominant part and/or in the zero order
terms were established by E.Zuazua and P.Lissy [13]; such estimates are es-
tablished under Kalman rank conditions satisfied by the pair of the coupling
and control matrices.

2. Preliminaries and statement of the problem

Let Ω ⊂ RN be a bounded connected domain with a C2 boundary ∂Ω
and let ω0 ⊂⊂ Ω. Let T > 0 and denote by Q = (0, T ) × Ω and for ω ⊂ Ω
write Qω = (0, T )× ω.

We consider systems of (n+ 1) parabolic equations coupled in zero order
terms through nonlinear functions, with one internally distributed control,
acting in ω0 and entering only the first equation. The main goal is obtain-
ing local exact controllability to some stationary solution for the nonlinear
system.

In the first part of the paper we study systems of parabolic equations with
star-like couplings which refer to the sistuation where yk is actuated in the
corresponding parabolic equation through a nonliniarity depending only on
y0, yk. Such a star-like coupled system has the form:

(2.1)


Dty0 −∆y0 = g0(x) + f0(x, y0) + χω0u, in (0, T )× Ω,
Dtyi −∆yi = gi(x) + fi(x, y0, yi), i ∈ 1, n, in (0, T )× Ω,
y0 = ... = yn = 0, on (0, T )× ∂Ω,
y(0, ·) = y0,

where gj ∈ L∞(Ω), j ∈ 0, n. We denote by χω0v the extension of v : ω0 → R
with 0 to the whole domain Ω. The control function is u : [0, T ]×ω0 −→ R,
acting in the equation of y0 and acting on the other components of the
solution, y1, ..., yn, through the corresponding coupling terms containing y0.
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Consider a stationary state y = (y0, ..., yn), yj ∈ L∞(Ω), j ∈ 0, n, solution
to the elliptic system:

(2.2)

 −∆y0 = g0(x) + f0(x, y0), x ∈ Ω,
−∆yi = gi(x) + fi(x, y0, yi), i ∈ 1, n, x ∈ Ω,
y0 = ... = yn = 0, x ∈ ∂Ω.

Observe in fact that, by elliptic regularity, an L∞ stationary solution is a
smooth solution.

Concerning the coupling terms we assume the following hypotheses:

(H1) f0 : RN ×R −→ R, fi : RN ×R×R −→ R, i ∈ 1, n are C1 functions
and there exist ω1, ...ωn ⊂ Ω, open nonempty subsets of Ω such that

(2.3) (ωi ∩ ω0) \
⋃
j 6=0,i

ωj 6= ∅, ∀i ∈ 1, n,

and for all i ∈ 1, n we have

(2.4) fi(x, y0, yi) = 0∀x ∈ Ω \ ωi, y0, yi ∈ R;

(H2) The following coupling condition holds:

(2.5) supp
∂fi
∂y0

(x, y0(x), yi(x)) ∩
{

(ωi ∩ ω0) \
⋃
j 6=0,i

ωj

}
6= ∅,

We consider first a controlled linear system which will appear through a
linearization procedure:

(2.6)

 Dtz0 −∆z0 = c0(t, x)z0 + χω0u, (0, T )× Ω,
Dtzi −∆zi = ai0(t, x)z0 + ci(t, x)zi, i ∈ 1, n, (0, T )× Ω,
z0 = ... = zn = 0, (0, T )× ∂Ω,

For M, δ > 0, and open subsets ωi ⊂⊂ (ωi ∩ω0) \
⋃
j 6=0,i ωj we introduce the

following classes of coefficients sets:

(2.7)

EM,δ,{ωi}i =

{
E = {ai0, cj}i∈1,n,j∈0,n : ai0, cj ∈ L∞(Q),

‖ai0‖L∞ , ‖cj‖L∞ ≤M,ai0 = 0 in Q \Qωi , and |ai0| ≥ δ on Qωi

}
.

We prove first that such linear systems with coefficients in EM,δ,{ωi}i are null

controllable with norm L2 and L∞ of the control uniformly bounded by a
constant C = C(M, δ, {ωi}i).

In order to achieve this goal we consider the adjoint system:

(2.8)

 −Dtp0 −∆p0 = c0(t, x)p0 +
∑n

i=1 ai0(t, x)pi, (0, T )× Ω,
−Dtpi −∆pi = ci(t, x)pi, i ∈ 1, n, (0, T )× Ω,
p0 = ... = pn = 0, (0, T )× ∂Ω.

and we prove an observability inequality as consequence of an appropriate
Carleman estimate. The Carleman estimate we establish in the next section
gives us more than just observability, it helps obtaining a priori estimates
for the control driving the solution of the linear system to zero and, as
the constants appearing in the Caleman estimates are depending only on
M, δ, {ωi}i, the estimates on the control will result uniform. This fact is
essential in the fixed point argument when dealing with the nonlinear system.
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In order to reformulate the problem in an abstract functional framework
let the state space be the Hilbert space H = [L2(Ω)]n+1 and the control
space U = L2(ω0). Consider the operator

A : D(A) ⊂ H −→ H,D(A) = (H1
0 (Ω) ∩H2(Ω))n+1,Az = ∆z,

and the control operator

B : U → H, Bu = χω0Bu, B = (1, 0, . . . , 0)>.

Then, problem (2.1) may be written in abstract form:

(2.9)

{
Dty = Ay + f(y) + Bu, t > 0,
y(0) = y0.

where f(y) = f(·, y(·)). The linear problem (2.6) may be reformulated as:

(2.10)

{
Dtz = Az + A0(t)z + C(t)z + Bu, t > 0,
z(0) = z0,

where C(t)z = C0(t, ·)z(·) and A0(t)z = A0(t, ·)z(·) where C0(t, x) is the di-
agonal matrix C0(t, x) = diag(ci(t, x))i=0,n and the coupling matrix A0(t, x)
has only one nonzero column, that is the first one and is given by

A0(t, x) = (0, a10, . . . , an0)> · (1, 0, . . . , 0).

For simplicity, when there is no confusion, we denote the norms of func-
tions z ∈ [L2(Ω)]n+1, or z ∈ [H1(Ω)]n+1 etc. as ‖z‖L2(Ω), respectively
‖z‖H1(Ω) etc..

Null controllabity for the linear system (2.10) above is equivalent to an
observability inequality
(2.11)

‖p(0)‖2L2(Ω) ≤ C(M, δ)

∫ T

0
‖B∗p‖2L2(ω0)dt, for some C(M, δ) > 0,

for all solutions p to the adjoint equation

(2.12) − p′ = Ap+ A∗0p+ Cp

where A∗0p = A>0 p,B
∗p = B>p|ω0 .

We extend our study to parabolic systems with tree-like couplings. In
fact we will treat only linear equations with appropriate hypotheses for the
coupling coefficients in a tree-like structure. Passing from linear results of
controllability to local controllability for nonlinear systems may be obtaiend
by exactly the same procedure as in the star-like case. An example of linear
parabolic system with tree-like couplings is the following:

(2.13)



Dtz0 −∆z0 = c0(t, x)z0 + χω0u, in (0, T )× Ω,
Dtz1 −∆z1 = a10(t, x)z0 + c1(t, x)z1, in (0, T )× Ω,
Dtz2 −∆z2 = a20(t, x)z0 + c2(t, x)z2, in (0, T )× Ω,
Dtz3 −∆z3 = a31(t, x)z1 + c3(t, x)z3, in (0, T )× Ω,
Dtz4 −∆z4 = a41(t, x)z1 + c2(t, x)z4, in (0, T )× Ω,
z0 = ... = z4 = 0, on (0, T )× ∂Ω,

and the general form of system with tree like couplings will be discussed in
§6.

The paper is organized as follows:
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• In §3 we prove appropriate Carleman estimates for adjoint system
(2.8) in either L2−L2 or L∞−L2 settings. This will be Theorem 1
• In §4 we prove the null controllability of linear system (2.6). The

approach uses a family of optimal control problems with penalized
final cost. One then obtains besides controllability an estimate for
the control in both L2 and L∞ norms by using the previous Carleman
estimates. This is Theorem 2.
• §5 is devoted to the local controllability in L∞ of nonlinear system

(2.1). The fact that controllability has to be proved in L∞ is due to
the high sensitivity of the Carleman estimates with respect to the
coupling coefficients, which is not the case when controls act in each
equation of the system. The argument is similar to that used in [6].
• In §6 we extend results of controllability, with one distributed scalar

control, for linear systems of parabolic equations, of the form (2.13),
with tree-like couplings. The key point here is obtaining appropriate
Carleman estimates. Local controllability for nonlinear systems with
tree-like couplings is also discussed.

3. Carleman estimates and observability

In this section we establish an L2 Carleman estimate that will help proving
an observability inequality fot the adjoint problem (2.8). This L2 Carleman
inequality and parabolic regularity are the starting point in obtaining an
L∞ control through a bootstrap argument.

We recall the classical Carleman estimate for a generic nonhomogeneous
parabolic problem,

(3.1)

{
Dtp+ Lp = h, in (0, T )× Ω,
p = 0, on (0, T )× ∂Ω,

where L is an uniformly elliptic operator of second order. Denote by Q :=
(0, T ) × Ω and, for ω ⊂⊂ Ω, Qω := (0, T ) × ω. The solution is observed in
Qω for sources h ∈ L2(Q).

We introduce the function

ψ ∈ C2(Ω), ψ|∂Ω = k > 0, k < ψ <
3

2
k in Ω, {x ∈ Ω : |∇ψ(x)| = 0} ⊂⊂ ω,

and the weight functions

(3.2) ϕ(t, x) :=
eλψ(x)

t(T − t)
, α(t, x) :=

eλψ(x) − e1.5λ‖ψ‖C(Ω)

t(T − t)
.

Then, the classical global Carleman estimate (see [9], [8]) is the following:

Lemma 1. There exist λ0, s0 and C > 0 such that if λ > λ0, s ≥ s0, the
following inequality holds:

(3.3)

∫
Q

[
(sϕ)−1(|Dtp|2 + |D2p|) + sλ2ϕ|Dp|2 + s3λ4ϕ3|p|2

]
e2sαdxdt

≤ C
∫
Qω

s3λ4ϕ3|p|2e2sαdxdt+

∫
Q
|h|2e2sαdxdt

for all p ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) solution of (3.1).
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We establish a Carleman estimate for the adjoint problem with source
g ∈ L2(Q)n+1 and observations on the subdomain ω0. The adjoint system
to problem (2.6) is

(3.4)

 −Dtp0 −∆p0 = c0(t, x)p0 +
∑n

i=1 ai0(t, x)pi + g0, (0, T )× Ω,
−Dtpi −∆pi = ci(t, x)pi + gi, i ∈ 1, n, (0, T )× Ω,
p0 = ... = pn = 0, (0, T )× ∂Ω.

In the following we are going to write Carleman estimates for each equation
in (2.8) by using in each case corresponding subdomains of observation and
appropriately chosen weight functions. We proceed as follows:

Consider open subsets

ω̃j ⊂⊂ ωj
and denote as above by Qω̃j = (0, T ) × ω̃j ; take the auxiliary functions

ψj , j = 0, n, with the following properties (where we have denoted by ω̃0 :=
ω0):

(3.5) ψj := ηj +Kj , j ∈ 0, n,

ηj ∈ C2(Ω), 0 < ηj in Ω, ηj |∂Ω = 0, {x ∈ Ω : |∇ηj(x)| = 0} ⊂⊂ ω̃j ,
for some fixed positive constants Kj > 0 such that

(3.6) ψi > ψ0 in Ω

and

(3.7)
supψj
inf ψj

<
8

7
,∀j ∈ 0, n.

Let 0 < ε < inf ψi, i ∈ 0, n a small positive number and denote by

(3.8) ψ = sup
x∈Ω

sup
j∈0,n

ψj(x) + ε, ψ = inf
x∈Ω

inf
j∈0,n

ψj(x)− ε.

Introduce also, for parameters s, λ > 0 the auxiliary functions:

(3.9) ϕj(t, x) :=
eλψj(x)

t(T − t)
, αj(t, x) :=

eλψj(x) − e1.5λψ

t(T − t)
,∀j ∈ 0, n

and

(3.10) ϕ(t) = ϕλ(t) :=
eλψ

t(T − t)
, α(t) = αλ(t) :=

eλψ − e1.5λψ

t(T − t)
,

(3.11) ϕ(t) = ϕλ(t) :=
eλψ

t(T − t)
, α(t) = αλ(t) :=

eλψ − e1.5λψ

t(T − t)
.

Remark 1. (i) As we are going to compare the various Carleman esti-
mates stated for each equation of the linear adjoint system, we will
need to compare the weights which are involved in thgose inequali-
ties. For this purpose let us observe that given m0 > 0 there exist
s0 = s0(m0), λ0 = λ0(m0) > 0 such that for all s > s0, λ > λ0,
|m| ≤ m0 and t ∈ (0, T ), the following inequality holds:

(3.12) esα ≤ smϕmi esαi ≤ esα,
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(3.13) esα0 ≤ smϕmi esαi .

(ii) Observe that if in (3.5) we replace Ki with Ki+M with the constant
M > 0 big enough, the above properties of the auxiliary functions
remain valid and, moreover, we may assume that

(3.14)
ψ

ψ
≤ 3

2
.

This extra assumption implies that there exist s̄0 > 0, λ̄0 > 0 such
that if s > s̄0 λ > λ̄0,

(3.15) |Dtϕi| ≤ Cϕ2
i , |Dtαi| ≤ Cϕ2

i , |D2
tαi| ≤ Cϕ3

i .

(iii) Observe that for λ big enough, say λ > λ, we have

(3.16)
αλ

αλ
< 2.

Indeed, this is a consequence to the fact that limλ→+∞
αλ

αλ
= 1, uni-

formly with respect to (t, x) ∈ Q.

In this section we prove the following Carleman estimate which has as
consequence the appropriate observability inequality for the adjoint system
(3.1).

Theorem 1. There exist constants λ0, s0 such that for λ > λ0 there exists
a constant C > 0 depending on (M, δ, {ωi}i, λ), such that, for any s ≥ s0,
the following inequality holds:

(3.17)

∫
Q

(|Dtp|2 + |D2p|2 + |Dp|2 + |p|2)e2sαdxdt

≤ C
∫
Qω0

|p0|2e2sαdxdt+ C

∫
Q
|g|2e2sαdxdt

for all p ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) solution of (3.4).
Moreover, there exist m0 ∈ N and δ1 > 0 such that for the homogeneous

adjoint system (i.e. taking g ≡ 0), we have the following L∞−L2 Carleman
estimate

(3.18) ‖pe(s+m0δ1)α‖L∞(Q) ≤ C‖p0e
sα‖L2(Qω0 ).

Proof. The second remark above is useful when obtaining Carleman esti-
mates, since the weights here are slightly different with respect to those used
in (see [9]) or [7]. However, this remark allows following the same lines of
proof and we may write Carleman estimate (3.3) for each equation j ∈ 0, n
with observation domain ω̃j and auxiliary functions and weight functions
ψj , ϕj , αj . Thus, there exist s0 > 0, C > 0 such that for any s ≥ s0, the
following inequalities hold:

(1) For p0 we have
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(3.19)

∫
Q

[
(sϕ0)−1(|Dtp0|2 + |D2p0|2) + sϕ0|Dp0|2 + s3ϕ3

0|p0|2
]
e2sα0dxdt

≤ C

∫
Qω0

s3ϕ3
0|p0|2e2sα0dxdt+

∫
Q

∣∣∣∣∣
n∑
i=1

ai0pi + g0

∣∣∣∣∣
2

e2sα0dxdt

 ≤
≤ C

[∫
Qω0

s3ϕ3
0|p0|2e2sα0dxdt

+n2M2
n∑
i=1

∫
Q
|pi|2 e2sαidxdt+

∫
Q
|g0|2e2sαidxdt

]
.

(2) For pi, i ∈ 1, n we have:

(3.20)

∫
Q

[
(sϕi)

−1(|Dtpi|2 + |D2pi|2) + sϕi|Dpi|2 + s3ϕ3
i |pi|2

]
e2sαidxdt

≤ C
∫
Qω̃i

s3ϕ3
i |pi|2e2sαidxdt+ C

∫
Q
|gi|2e2sαidxdt.

We sum the above Carleman inequalities we obtain for some constant
C = C(M, {ωj}j) > 0 that
(3.21)

n∑
j=0

{∫
Q

[
(sϕj)

−1(|Dtpj |2 + |D2pj |2) + sϕj |Dpj |2 + s3ϕ3
j |pj |2

]
e2sαjdxdt

}

≤ C

[∫
Qω0

s3ϕ3
0|p0|2e2sα0dxdt+

n∑
i=1

(∫
Qω̃i

s3ϕ3
i |pi|2e2sαidxdt

)

+
n∑
j=0

(∫
Qω̃j

|gj |2e2sαjdxdt

) .
At this point we have to properly estimate the terms containing pi on

ω̃i, i ∈ 1, n from the right hand-side in terms of the component p0 observed
on ω̃0. For this purpose we will use the first equation of (2.8) considered on
ωi ∩ ω0, which by hypothesis (2.7) is coupled only to pi:

(3.22) Dtp0 + ∆p0 + c0p0 + ai0pi = g0 in (0, T )× ωi ∩ ω0.

Consider the cutoff functions γi, i ∈ 1, n with the properties

γi ∈ C∞0 (ωi), |γi| ≤ 1, supp γi = ωi

γi = sign (ai0 |ωi) on ω̃i, γi 6= 0 in ωi.

where sign (ai0) is the sign of ai0 in ωi, which, by hypothesis (2.7) and
continuity is nonzero and constant in ω̃i. Multiply, scalarly in L2(Qω0), the
equation (3.22) by γis

3ϕ3
i pie

2sαi :

(3.23)

∫
Qωi

γiai0(x)s3ϕ3
i |pi|2e2sαidxdt

=

∫
Qωi

γis
3ϕ3

i (−c0p0 −Dtp0 −∆p0 − g0)pie
2sαidxdt
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We use (2.7) to say that that there exists a constant such that

(3.24)

δ

∫
Qω̃i

s3ϕ3
i |pi|2e2sαidxdt ≤

∫
Qω̃i

|ai0(x)|s3ϕ3
i |pi|2e2sαidxdt

≤
∫
Qωi

ai0(x)s3ϕ3
i |pi|2e2sαidxdt.

We estimate each term from the right hand-side of (3.23) using the properties
of γj , j ∈ 0, n. Let C > 0 denoting various constants depending on δ,M and
ωi, ω̃i.

For the first term in right side of (3.23) we have:

(3.25)

∣∣∣∣∣
∫
Qωi

γis
3ϕ3

j (−c0p0)pie
2sαidxdt

∣∣∣∣∣
≤M

(∫
Qωi

s2ϕ2
i |pi|2e2sαidxdt

) 1
2
(∫

Qωi

s4ϕ4
i |p0|2e2sαidxdt

) 1
2

≤
∫
Qωi

s2ϕ2
i |pi|2e2sαidxdt+M2

∫
Qωi

s4ϕ4
i |p0|2e2sαidxdt.

The same computation gives an estimate for the term involving the source:

(3.26)

∣∣∣∣∣
∫
Qωi

γis
3ϕ3

j (−g0)pie
2sαidxdt

∣∣∣∣∣
≤
∫
Qωi

s2ϕ2
i |pi|2e2sαidxdt+M2

∫
Qωi

s4ϕ4
i |g0|2e2sαidxdt.

Observe now that we have the following estimates for the weight functions,
with a constant cst not depending on s:
(3.27)
|γis3Dt(e

2sαiϕ3
i )| = |γis3(e2sαi2sDtαiϕ

3
i + 3e2sαiϕ2Dtϕi)| ≤ cst e2sαis5ϕ5

i

and

(3.28) |s3∆(γiϕ
3
i pie

2sαi)| ≤ cst s3ϕ3
i (s

2ϕ2
i |pi|+ sϕi|∇pi|+ |∆pi|)e2sαi .

We now proceed with estimating the second term in (3.23) using, as usu-
ally in Carleman estimates, integration by parts:∣∣∣∣∣

∫
Qωi

γis
3ϕ3

i (−Dtp0)pie
2sαidxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫
Qωi

s3Dt(ϕ
3
i pie

2sαi)p0dxdt

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Qωi

s3Dt(ϕ
3
i e

2sαi)pip0dxdt

∣∣∣∣∣+

∣∣∣∣∣
∫
Qωi

s3ϕ3
i e

2sαiDtpip0dxdt

∣∣∣∣∣
≤ C

∣∣∣∣∣
∫
Qωi

e2sαis5ϕ5
i pjp0dxdt

∣∣∣∣∣+

∣∣∣∣∣
∫
Qωi

e2sαis3ϕ3
iDtpip0dxdt

∣∣∣∣∣
≤
∫
Qωi

s2ϕ2
i |pi|2e2sαidxdt+ C

∫
Qωi

s8ϕ8
i |p0|2e2sαidxdt(3.29)

+

∫
Qωi

(sϕ)−2|Dtpi|2e2sαidxdt+ C

∫
Qωi

s8ϕ8
i |p0|2e2sαidxdt.
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We proceed now with estimating the third term in right hand side of (3.23):

(3.30)

∣∣∣∣∣
∫
Qωi

γis
3ϕ3

i (−∆p0)pie
2sαidxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫
Qωi

s3∆(γiϕ
3
i pie

2sαi)p0dxdt

∣∣∣∣∣
≤ C

∫
Qωi

s3ϕ3
i (s

2ϕ2
i |pi|+ sϕi|∇pi|+ |∆pi|)e2sαi |p0|dxdt

≤
∫
Qωi

[s2ϕ2
i |pi|2 + |∇pi|2 + (sϕi)

−2|∆pi|2]e2sαidxdt

+ C

∫
Qωi

s8ϕ8
i |p0|2e2sαidxdt.

Using (3.25),(3.26),(3.29), (3.30) and (3.24) we have, for i ∈ 1, n that

(3.31)

∫
Qω̃i

s3ϕ3
i |pi|2e2sαidxdt ≤ C

∫
Qωi

s8ϕ8
i |p0|2e2sαidxdt

+

∫
Qωi

[
(sϕi)

−2(|∆pi|2 + |Dtpi|2) + s2ϕ2
i |pi|+ |∇pi|2

]
e2sαidxdt

+ C
n∑
i=1

∫
Qωi

s4ϕ4
0|g0|2e2sαidxdt.

Going back to (3.21), we have

(3.32)
n∑
j=0

{∫
Q

[
(sϕj)

−1(|Dtpj |2 + |D2pj |2) + sϕj |Dpj |2 + s3ϕ3
j |pj |2

]
e2sαjdxdt

}

≤ C
∫
Qω0

s3ϕ3
0|p0|2e2sα0dxdt+ C

n∑
i=1

(∫
Qωi

s8ϕ8
i |p0|2e2sαidxdt

+

∫
Qωi

[
(sϕi)

−2(|D2pi|2 + |Dtpi|2) + s2ϕ2
i |pi|2 + |Dpi|2

]
e2sαidxdt

)

+ C
n∑
i=1

∫
Qωi

s4ϕ4
0|g0|2e2sαidxdt+ C

n∑
j=0

∫
Q
|gj |2e2sαjdxdt.

We now absorb the integral terms containing pi in the right hand side into
the corresponding higher order terms in the left side of the above inequality,
by increasing s and taking it big enough. We obtain:
(3.33)

n∑
j=0

{∫
Q

[
(sϕj)

−1(|Dtpj |2 + |D2pj |2) + sϕj |Dpj |2 + s3ϕ3
j |pj |2

]
e2sαjdxdt

}

≤ C
∫
Qω0

s3ϕ3
0|p0|2e2sα0dxdt+ C

n∑
i=1

∫
Qωi

s8ϕ8
i |p0|2e2sαidxdt.

+ C

n∑
i=1

∫
Qωi

s4ϕ4
0|g0|2e2sαidxdt+ C

n∑
j=0

∫
Q
|gj |2e2sαjdxdt.
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Now if we use Remark 1 in order to take a smaller weight in the left side and a
greater one in the right side. Then there exist s0 > 0 and C = C(M, δ, {ωj}j)
such that the following Carleman estimate is true for all s ≥ s0:

(3.34)

n∑
j=0

[∫
Q

(
|Dtpj |2 + |D2pj |2 + |Dpj |2 + |pj |2

)
e2sαdxdt

]
≤ C

∫
Qω0

|p0|2e2sαdxdt+ C

∫
Q
|g|2e2sαdxdt.

�

Concerning the L∞−L2 Carleman estimate for the solution of the adjoint
problem (2.8) we proceed in the same way as is in [5, 6] or[12]. We need
to use the maximal regularity result in Lp spaces for parabaolic problems
(see [11]) and Sobolev embeddings for anisotropic Sobolev spaces which are
contained in the following lemma:

Lemma 2 ([11], Lemma 3.3). Let z ∈W 2,1
r (Q).

Then z ∈ Z1 where

Z1 =

 Ls(Q) with s ≤ (N+2)r
N+2−2r when r < N+2

2

Ls(Q) with s ∈ [1,∞[, when r = N+2
2

Cα,α/2(Q) with 0 < α < 2− N+2
r , when r > N+2

2

and there exists C = C(Q, p,N) such that

‖z‖Z1 ≤ C‖z‖W 2,1
r (Q)

.

Using the above regularity result we consider the following sequence of
numbers:

(3.35) σ0 = 2, σj :=


(N + 2)σj−1

N + 2− 2σj−1
, if σj−1 <

N+2
2 ,

3
2σj−1, if σj−1 ≥ N+2

2 ,

such that by Lemma 2 we have

W 2,1
σm−1

(Q) ⊂ Lσm(Q).

Now, let us fix a δ1 > 0 and a sequence (qj)j>0 defined by

qj := pεe(s+jδ1)α.

Then qj = (qj0, . . . , q
j
n)> is solution to the problem

(3.36)
Dtq

j + Aqj + Cqj +A>0 q
j = (s+ jδ1)Dtαq

j ,

qj(T ) = 0.

Observe that the right-hand side may be bounded in terms of qj−1, with
some constant Cj = Cj(s, δ1) > 0, as follows

(3.37) (s+ jδ1)Dtαq
j = (s+ jδ1)

2t− T
t(T − t)

αeδ1αqj−1 ≤ Cjqj−1.

By maximal parabolic regularity (see [11]) we have

(3.38) ‖qj‖
W 2,1
σj−1
≤ C̃j‖qj−1‖Lσj−1



12 C.G. LEFTER AND E.A. MELNIG

and using Sobolev type embedding from Lemma 2, we have that there exists
a constant Kj such that

(3.39) ‖qj−1‖Lσj−1 ≤ Kj‖qj−1‖
W 2,1
σj−2

.

The sequence (σm)m is increasing to +∞ and choose rank m0 such that
σm0 >

N+2
2 ≥ σm0−1. This implies that

(3.40) W 2,1
σm0

(Q) ⊂ L∞(Q).

From (3.38), (3.39) and (3.40), and with the use of (3.17), we have that
there exists a constant C > 0 such that

(3.41)
‖pe(s+m0δ1)α‖L∞(Q) = ‖qm0‖L∞(Q) ≤ C‖q0‖Lσ0 (Q) = C‖pesα‖L2(Q)

≤ C‖p0e
sα‖L2(Qω0 ).

Remark 2. In order to obtain the observability inequality we proceed in
the classical manner, by multiplying scalarly in L2(Ω) each equation of the
system (3.1) by pi and making use of dissipativity to find, for some constant
c > 0 depending only on the coefficients of the system, the inequality:

1

2

d

dt
‖p‖2L2(Ω) + c‖p‖2L2(Ω) ≥ 0,

which gives

‖p(0)‖2L2(Ω) ≤ ‖p(t)‖
2
L2(Ω)e

Ct, t ∈ (0, T ).

Consequently, for fixed s > s0, we have that

‖p(0)‖2L2(Ω) ≤
T

2

∫ 3T
4

T
4

‖p(t)‖2L2(Ω)e
Ctdt ≤ K(T, s)

∫ T

0
‖p(t)‖2L2(Ω)e

2sαdt.

Now, by Carleman estimate (3.34) we obtain the observability inequality,
with a constant C = C(T, s, δ,M, {ωj}j):

(3.42) ‖p(0, ·)‖2L2(Ω) ≤ C
∫
Qω0

|p0|2e2sαdxdt.

4. Linear system: null controllability

The main controllability result concerning linear system (2.6) is the fol-
lowing

Theorem 2. Consider system (2.6) with coefficients in EM,δ,{ωi}i. Then

there exists a constant C = C(M, δ, {ωi}i) such that for all z0 ∈ H there
exists u∗ ∈ L2(0, T ;L2(ω0)) ∩ L∞(Qω0) which drives the corresponding so-
lution to (2.6), z = zu

∗
in 0 i.e. satisfies z(T, ·) = 0 and satisfies the norm

estimate

(4.1) ‖u∗e−sα‖L2(0,T ;L2(ω0)) + ‖u∗‖L∞(Qω0 ) ≤ C‖z0‖L2(Ω).

Proof.
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L2(Q) control. In order to obtain norm estimates for the controls driving
the trajectory to the linear system in 0, we consider a family of optimal
control problems depending on a small parameter ε > 0:

(4.2) inf
u∈L2(Qω0 )

1

2

∫
Qω0

|u|2e−2sαdxdt+
1

2ε

∫
Ω
|z(T, ·)|2dxdt,

with z = zu the solution of the linear controlled system (2.10). Classical
results concerning optimal control with quadratic cost for parabolic equa-
tions insure existence of optimal control uε which by Pontriaghin maximum
principle satisfy

(4.3) uε = e2sαB∗pε = e2sαpε0|ω0 .

where pε is solution to the adjoint system:

(4.4)

{
Dtp

ε = −Apε −C(t)pε −A∗0(t)pε,

pε(T ) = −1
εz
ε(T ).

By cross multiplying the equations for zε = zu
ε

and pε by pε respectively zε

and integrating on Q we obtain:

d

dt
〈zε, pε〉L2(Ω) = 〈(A+A0+C)zε+Buε, pε〉L2(Ω)−〈(A+A0+C)∗pε, zε〉L2(Ω).

We integrate on [0, T ] and use the observability inequality (3.42)

1

ε
‖zε(T, ·)‖2L2(Ω) + 〈uε, B∗pε〉L2(Q) = −〈zε(0, ·), pε(0, ·)〉L2(Ω)

≤ ‖z0‖L2(Ω)‖p(0, ·)‖L2(Ω) ≤ C‖z0‖L2(Ω)

(∫
Qω0

|pε0|2e2sαdxdt

) 1
2

.

Since 〈uε, B∗pε〉L2(Q) =
∫
Qω0
|pε0|2e2sαdxdt, using appropriately balanced

Young’s inequality, we find that

(4.5)
1

ε
‖zε(T, ·)‖2L2(Ω) +

1

2

∫
Qω0

|pε0|2e2sαdxdt ≤ C‖z0‖2L2(Ω),

gives by (4.3) the following estimate the sequence of optimal controls (uε)ε
and final state:

(4.6)
1

ε
‖zε(T, ·)‖2L2(Ω) +

1

2

∫
Qω0

|uε|2e−2sαdxdt ≤ C‖z0‖2L2(Ω).

Now, this L2 bound for the sequence (uε)ε, allows to extract a subse-
quence, denoted for simplicity also (uε)ε weakly convergent in L2(Q) to a
limit u∗.

Write the corresponding solutions (zε)ε as

zε = wε + v

where wε is solution to (2.6) with initial data wε(0) = 0 and v solution to
homogeneous equation

Dtv = Av + (A0 + C)v = 0, v(0) = zε(0) = z0.

We have that the sequence (wε)ε is bounded in L2(0, T ;D(A)) and the se-
quence of derivatives (Dtw

ε)ε is bounded in L2(0, T ;L2(Ω)). By Aubin’s the-
orem we can extract a subsequence, denoted also (wε)ε, strongly convergent
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in L2(0, T ;H1
0 (Ω)) to w ∈ L2(0, T ;H1

0 (Ω)) ∩ L2(0, T ;D(A)). Consequently
(zε) is strongly convergent in L2(0, T ;H1

0 (Ω)) to z ∈ L2(0, T ;H1
0 (Ω)). We

may now pass to the limit in the weak formulation of solutions to (2.6),
(2.10); thus, for some test function ϕ ∈ [H1

0 (Ω)]n+1, we have

(4.7)



〈zε(t, ·),ϕ〉L2(Ω) − 〈zε(0, ·),ϕ〉L2(Ω) +

∫ t

0
〈∇zε(τ, ·),∇ϕ〉L2(Ω)dτ

+

∫ t

0
〈(A0 + C)zε,ϕ〉L2(Ω)dτ =

∫
(0,t)×ω0

uεϕdxdτ,

zε(0, ·) := z0,

and we find that z ∈ L2(Q) solution for the problem (2.10) with initial datum
z0 ∈ L2(Ω). In fact, by Arzelà-Ascoli theorem wε → w in C([0, T ], L2(Ω))
and thus z(T ) = 0 and by weak lower semicontinuity of the L2 norm we also
have the following estimate for the control driving the solution to 0:

(4.8)

∫
Qω0

|u∗|2e−2sαdxdt ≤ C‖z0‖2L2(Ω).

where C = C(T, s, s1,M, δ, {ωj}j).

L∞(Q)- control. Regarding the L∞ norm estimates for the sequence (uε)ε
and also for u∗ we will use the results from the previous section §3:

(4.9) ‖uεe−2sα+(s+m0δ1)α‖L∞(Qω0 ) = ‖pε0e(s+m0δ1)α‖L∞(Qω0 ) ≤ C‖z0‖L2(Q).

Now we see that we could start from the beginning with λ big enough such
that (3.16) holds and in consequence

2sα ≤ (s+m0δ1)α.

As −2sα+ (s+m0δ1)α > 0, by passing to L∞ weak-* limit in (4.9), we find
that

(4.10) ‖u∗‖L∞(Qω0 ) ≤ ‖u∗e−2sα+(s+m0δ1)α‖L∞(Qω0 ) ≤ C‖z0‖L2(Q),

which concludes (4.1).

5. Nonlinear system: local exact controllability

We prove in this section the following local controllability result concern-
ing system (2.1):

Theorem 3. Suppose y is a stationary state, i.e. solution to (2.2), and
that the functions fj , j ∈ 0, n satisfy hypotheses (H1), (H2). Then, for all
β0 > 0 there exist ζ0 = ζ0(β0) > 0 and C = C(β0, {ωi}i, y) such that if
‖yu(0)− y‖ < ζ0 there exists a control u ∈ L∞(Q) satisfying

‖u‖L∞(Q) ≤ C‖yu(0)− y‖L∞(Ω)

and
yu(T, ·) = y,

with
‖y(t, ·)− y‖L∞ ≤ β0, t ∈ [0, T ].
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Proof. The approach to the local null controllability of the system around
the stationary state is based on the Kakutani fixed point theorem.

For this aim, with a solution y to (2.1), we consider the system satisfied
by z := y − y, written as a linear system

(5.1)


Dtz0 −∆z0 = cz0(t, x)z0 + χω0u, (0, T )× Ω,
Dtzi −∆zi = azi0(t, x)z0 + czi (t, x)zi, i ∈ 1, n, (0, T )× Ω,
z0 = ... = zn = 0, (0, T )× ∂Ω,
z(0, x) = z0(x) := y(0, x)− y(x) x ∈ Ω,

where the nonlinearity is hidden into the coupling coefficients which are
defined by:

azi0(t, x) :=

∫ 1

0

∂

∂y0
fi(x, y0(x) + τz0(t, x), yi(x) + τzi(t, x))dτ, i ∈ 1, n

czj (t, x) :=

∫ 1

0

∂

∂yj
fj(x, y0(x) + τz0(t, x), yj(x) + τzj(t, x))dτ, j ∈ 0, n.

(5.2)

Observe that {a0
i0, c

0
j}i∈1,n,j∈0,n are the coefficients of the linearized system

around the stationary solution y as

a0
i0(x) =

∂

∂y0
fi(x, y0(x), yi(x)),

c0
i =

∂

∂yi
fi(x, y0(x), yi(x)), c0

0 =
∂

∂y0
f0(x, y0(x)).

We see now that hypotheses (2.4) and (2.5) tell us that we may choose
M0, δ0 > 0 and ωi ⊂⊂ (ωi ∩ ω0) \

⋃
j 6=0,i ωj such that

(5.3) {a0
i0, c

0
j}i∈1,n,j∈0,n ∈ EM0,δ0,{ωi}i .

Let β > 0 and define Mβ to be:

(5.4) Mβ = {z̃ ∈ L∞(Q) : ‖z̃‖L∞(Q) ≤ β}.

For z̃ ∈ Mβ, we consider the coefficients az̃i0(x), cz̃j (x) defined as in (5.2)
with z replaced by z̃.

Observe now that we may choose β0 > 0 small enough such that if z̃ ∈
Mβ0 we have

(5.5) {az̃i0, cz̃j}i∈1,n,j∈0,n ∈ E2M0,
δ0
2
,{ωi}i

.

Consider now the linear system (5.1) with coefficients {az̃i0, cz̃j}:

(5.6)


Dtz0 −∆z0 = cz̃0(t, x)z0 + χω0u, (0, T )× Ω,
Dtzi −∆zi = az̃i0(t, x)z0 + cz̃i (t, x)zi, i ∈ 1, n, (0, T )× Ω,
z0 = ... = zn = 0, (0, T )× ∂Ω,
z(0, x) = z0(x) x ∈ Ω.

The linear problem (5.6) may be reformulated as:

(5.7)

{
Dtz = Az + Az̃

0(t)z + Cz̃(t)z + Bu, t > 0,
z(0) = z0,
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where Cz̃(t)z = C z̃0 (t, ·)z(·) and Az̃
0(t)z = Az̃0(t, ·)z(·) where C z̃0 (t, x) =

diag(cz̃i (t, x))i=0,n and the coupling matrix

Az̃0(t, x) = (0, az̃10(t, x), . . . , az̃n0(t, x))> · (1, 0, . . . , 0).

Theorem 2 says that for z̃ ∈ Mβ0 there exists a control u∗ = u∗(z̃) ∈
L2(0, T ;L2(ω0)) ∩ L∞(Qω0) satisfying the norm estimate

(5.8)
J(u∗) := ‖u∗e−sα‖L2(0,T ;L2(ω0)) + ‖u∗‖L∞(Qω0 )

≤ C(2M0, δ0/2, {ωi}i)‖z0‖L2(Ω),

and driving the solution zu
∗,z̃ of the linear system (5.6) in zero : zu

∗,z̃(T ) = 0.
Observe that J is a norm in the space U∗ := L2

e−sα ∩ L
∞(Qω0).

We will write

(5.9) zu,z̃ = T z̃1 (z0) + T z̃2 (u),

where the first term is the solution to problem (5.6) with initial data z0 and
the second term is the solution to system (5.6) with initial datum zero and
control u. Let us denote by

(5.10) S1(z0) = etAz0, S2h = etA ∗ h =

∫ t

0
e(t−s)Ah(s)ds,

where h ∈ L2(0, t; [L2(Ω)]n+1). With these notations

(5.11) zu,z̃ = T z̃1 (z0) + T z̃2 (u) = S1(z0) + S2(Az̃0z
u,z̃ + C z̃0z

u,z̃ +Bu).

Fix an initial datum z0 ∈ L∞(Ω). We define now the following set-valued
map, associated to z0:

(5.12)

Fz0 :Mβ0 → 2L
∞(Q)

Fz0(z̃) = {zu,z̃ : u satisfies (5.8) and zu,z̃(T ) = 0}
= {T z̃1 (z0) + T z̃2 (u) : zu,z̃(T ) = 0, J(u) ≤ K‖z0‖L2},

where by K we denoted the constant in (5.8), K = C(2M0, δ0/2, {ωi}i).
In order to obtain local controllability of the nonlinear system it is enough

to find a fixed point for Fz0 . We achieve this goal by applying Kakutani
fixed point theorem to Fz0 in Mβ0 ; we have thus to verify the following
statements:

i) For every z̃ ∈M, Fz0(z̃) is a nonempty, closed and convex subset of
L∞(Q);

Observe that zu
∗(z̃) ∈ Fz0(z̃) and thus Fz0(z̃) 6= ∅. Convexity

comes from linearity of T2 and convexity of J .
To prove that Fz0(z̃) is closed, suppose zm ∈ Fz0(z̃), zm → z in

L∞. We have to prove that z ∈ Fz0(z̃). Indeed, we have that

zm = T z̃1 (z0) + T z̃2 (um)

for some controls um ∈ U∗ satisfying estimate J(um) ≤ K‖z0‖L2 .
We may now invoke Aubin-Lions and Ascoli-Arzelà compactness
results (see e.g. [15]) applied to the solution operator of a para-
bolic initial boundary value problem and thus to say that T2 is a
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compact operator from L2(0, T ;L2(Ωω0)) to C([0, T ]; [L2(Ω)]n+1) ∩
L2(0, T ; [H1

0 (Ω)]n+1). Thus, extracting subsequence um ⇀ u weakly
in L2(Qω0) we find

zm → z in C([0, T ]; [L2(Ω)]n+1) ∩ L2(0, T ; [H1
0 (Ω)]n+1)

with z(T ) = 0 since zm(T ) = 0. Thus z ∈ Fz0(z̃).
ii) There exists ζ0 = ζ0(β0) such that for ‖z0‖L∞(Ω) < ζ0 we have

Fz0(Mβ0) ⊂Mβ0 .

This follows from the a priori estimates for solutions to initial bound-
ary value problems for parabolic systems:

‖T z̃1 (z0)‖L∞(Ω) ≤ C1(‖z̃‖L∞)‖z0‖L∞(Ω),

‖T z̃2 (u)‖L∞(Ω) ≤ C2(‖z̃‖L∞)‖u‖L∞(Qω0 )

and from the remark that both constants depend in fact uniformly on
the L∞ norm of the couplking coefficients and thus depend uniformly
on the norm of z̃ in L∞.

iii) The set Fz0(Mβ0) is imbedded into a convex and compact subset of
Mβ0 .

Indeed, as Mβ0 is closed and convex, it is enough to prove that
Fz0(Mβ0) is relatively compact in L∞ topology. For this, take a
sequence zm ∈ Fz0(Mβ0). Correspondingly, there exist z̃m ∈ Mβ0

with zm ∈ Fz0(z̃m). Take corresponding controls um ∈ U∗ such that
(see definition of Fz0 and (5.11)):

(5.13) zm = T z̃
m

1 (z0) + T z̃
m

2 (um) = S1(z0) + S2(Az̃
m

0 zm + C z̃
m

0 zm +Bum).

We have the following bounded sequences
• z̃m ∈Mβ0 and so Az̃

m

0 (Q), C z̃
m

0 (Q) are bounded in L∞;
• zm ∈Mβ0 and is thus bounded in L∞(Q);
• um ∈ U∗ is bounded in L∞(Q).

Consequently Az̃
m

0 zm + C z̃
m

0 zm + Bum is bounded in Lp(Q), p > 1.
By parabolic regularity (see [11]), S2(Az̃

m

0 zm + C z̃
m

0 zm + Bum) is

bounded in any W 2,1
p ,∀1 < p <∞ (the space of anisotropic Sobolev

functions). For p big enough we have W 2,1
p ⊂ C0,α(Q) for some

0 < α < 1 (the space of Hölder continuous functions). C0,α(Q)
is compactly imbedded in C(Q). Consequently (zm) is a relatively
compact sequence in L∞(Q).

iv) Fz0 is upper semi-continuous, i.e. if zm → z, z̃m → z̃ in L∞ and
zm ∈ Fz0(z̃m) then z ∈ Fz0(z̃).

Indeed we have (see (5.2)) that Az̃
m

0 → Az̃0, C z̃
m

0 → C z̃0 in L∞ and
as zm is relatively compact in C([0, T ]; [L2(Ω)]n+1) we may pas to
the limit in (5.13) and find that z ∈ Fz0(z̃).

Now we conclude the proof by Kakutani fixed point theorem, which in-
sures existence of z ∈ Mβ0 such that z ∈ Fz0(z) i.e. there exists u ∈ U∗
such that zu,z = z. In conclusion yu := y+z is the solution to the controlled
system (2.1) with control u satisfying yu(T ) = y.
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6. Parabolic systems with tree-like couplings. Null
controllability.

We describe in the following what we mean by a system with tree-like
couplings. This would be a parabolic system of the form
(6.1)

Dtz0 −∆z0 = c0(t, x)z0 + χω0u, in (0, T )× Ω,
Dtzi −∆zi = aik(i)(t, x)zk(i) + ci(t, x)zi, i ∈ 1, n, in (0, T )× Ω,
z0 = ... = zn = 0, on (0, T )× ∂Ω,
z(0, ·) = z0,

with the following assumptions on the function k : {1, . . . , n} → {0, 1, . . . , n}:

(6.2)
∀i ∈ {1, . . . , n}, ∃m = m(i), 1 ≤ m ≤ n− 1, (k◦)m(i) = k ◦ . . . ◦ k(i) = 0.

The linear problem (6.1) may be reformulated as:

(6.3)

{
Dtz = Az + A0(t)z + C(t)z + Bu, t > 0,
z(0) = z0,

where C(t)z = C0(t, ·)z(·) and A0(t)z = A0(t, ·)z(·) where C0(t, x) =
diag(ci(t, x))i=0,n and the coupling matrix

A0(t, x) = (ail)i,l∈1,n = (aik(i)δlk(i))i,l∈1,n,

where we denoted by δlj the Kronecker symbol. Denote by

Ij = k−1(j) = {i ∈ 1, n : k(i) = j}.

Fix now a family of open subsets ωi ⊂ Ω, i ∈ 1, n such that

(6.4) Di := ωi ∩ ωk(i) ∩ · · · ∩ ω(k◦)m(i) 6= ∅.

(6.5) Di \
⋃

j 6=i,k(j)=k(i)

ωj 6= ∅.

Choose further a family of open subsets {ωj}j∈0,n with the properties

ω0 ⊂⊂ ω0, ωi ⊂⊂ Di \
⋃

l 6=i,k(l)=k(i)

ωl,(6.6)

ωi ⊂⊂ ωk(i) ⊂⊂ ω0, i ∈ 1, n.(6.7)

For M, δ > 0, and the family of open subsets described above {ωi}i, we
introduce the following classes of coefficients sets:
(6.8)

EM,δ,{ωi}i,k =

{
E = {aik(i), cj}i∈1,n,j∈0,n : aik(i), cj ∈ L∞(Q),

‖aik(i)‖L∞ , ‖cj‖L∞ ≤M,aik(i) = 0 in Q \Qωi , and |aik(i)| ≥ δ on Qωi

}
.
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In order to study controllability we consider the system adjoint to system
(6.1):
(6.9)
−Dtpj −∆pj − cj(t, x)pj =

∑
l,k(l)=j

alj(t, x)pl = Nj(t, x), j ∈ 0, n, in Q,

p0 = ... = pn = 0, on (0, T )× ∂Ω,

where for simplicity of further calculations we denoted by

Nj(t, x) =
∑

l,k(l)=j

alj(t, x)pl(t, x).

As we have seen in the previous sections all controllability results have
as essential ingredient an appropriate Carleman inequality for the adjoint
system. For obtaing such estimates it is essential to have corresponding
auxiliary functions which appear in the construction of the weights. We
describe this in what follows

Consider again open subsets

ω̃j ⊂⊂ ωj , j ∈ 0, n,

and auxiliary functions

ηj ∈ C2(Ω), 0 < ηj in Ω, ηj |∂Ω = 0, {x ∈ Ω : |∇ηj(x)| = 0} ⊂⊂ ω̃j , j ∈ 0, n.

We construct now the weight functions entering the various Carleman es-
timates, with the following properties:

i) ψj,f , j ∈ 0, n, Ij 6= ∅, ψi,s, i ∈ 1, n are defined by

(6.10) ψj,f := ηj +Kj , ψi,s := ηi + K̃i

for some fixed positive constants Kj , K̃i > 0 and such that for a
fixed ε > 0 we have

(6.11) ψi,s > sup
Ω

ψj,f + 2ε, ∀i ∈ Ij , Ij 6= ∅;

(6.12) ψi,f > sup{ψl,s : k(l) = k(i)}+ 2ε, ∀i ∈ 1, n, Ii 6= ∅;
ii)

(6.13)
supψj,f
inf ψj,f

<
8

7
,
supψi,s
inf ψi,s

<
8

7
;

iii) For j ∈ 0, n such that Ij 6= ∅ we define

ψj = sup{ψj,f (x), ψi,s(x) : i ∈ Ij , x ∈ Ω}+ ε,(6.14)

ψ
j

= inf{ψj,f (x), ψi,s(x) : i ∈ Ij , x ∈ Ω} − ε.(6.15)

iv) Denote by ψ = sup{ψj : Ij 6= ∅} and ψ = inf{ψ
j

: Ij 6= ∅} and

(6.16) ϕj(t) = ϕλj (t) :=
eλψj

t(T − t)
, αj(t) = αλj (t) :=

eλψj − e1.5λψ

t(T − t)
,

(6.17) ϕ
j
(t) = ϕλ

j
(t) :=

e
λψ

j

t(T − t)
, αj(t) = αλj (t) :=

e
λψ

j − e1.5λψ

t(T − t)
.
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(6.18) α(t) =
eλψ − e1.5λψ

t(T − t)
, α(t) =

eλψ − e1.5λψ

t(T − t)

Remark 3. Observe that this construction of the weight functions allows
saying that

ψj < ψ
i
, i ∈ Ij , Ij 6= ∅,

and thus, given θ > 0 there exists s(θ) such that for s > s(θ) we have

(6.19) esαj(t) ≤ θesαi(t), i ∈ Ij , Ij 6= ∅, t ∈ [0, T ].

The Carleman estimates we establish now in the tree coupling case are
given in the following theorem:

Theorem 4. Suppose that the coupling coefficients in (6.9) satisfy

{aik(i), cj}i∈1,n,j∈0,n ∈ EM,δ,{ωi}i,k.

Then there exist constants λ0, s0 such that for λ > λ0 there exists a con-
stant C > 0 depending on (M, δ, {ωi}i, λ) such that, for any s ≥ s0, the
following inequality holds:

(6.20)

∫
Q

(|Dtp|2 + |D2p|2 + |Dp|2 + |p|2)e2sαdxdt

≤ C
∫
Qω0

|p0|2e2sαdxdt

for all p ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) solution of (6.9).
Moreover, there exists m0 ∈ N and δ1 > 0 such that we have the following

L∞ − L2 Carleman estimate

(6.21) ‖pe(s+m0δ1)α‖L∞(Q) ≤ C‖p0e
sα‖L2(Qω0 ).

Proof. For j ∈ 0, n we write separately Carleman inequalities for the case
Ij 6= ∅ and respectively for the case Ij = ∅. If j ∈ 0, n is such that Ij 6= ∅
we treat the equations satisfied by pj and pl, l ∈ Ij as a nonhomogeneous
adjoin system, as in the star-like couplings (3.4), while in the case Ij = ∅ we
have to deal with homogeneous parabolic equations:
(6.22){

−Dtpj −∆pj − cj(t, x)pj =
∑

l,k(l)=j alj(t, x)pl, in (0, T )× Ω,

−Dtpl −∆pl − cl(t, x)pl = Nl(t, x), l ∈ Ij .

For the case Ij 6= ∅ a Carleman estimate, which is an immediate consequence
to intermediate estimate (3.21), states that there exists sj and C > 0 not
depending on s such that for s > sj we have
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(6.23)

∫
Q

(|Dtpj |2 + |D2pj |2 + |Dpj |2 + |pj |2)e2sαjdxdt

+

∫
Q

∑
i∈Ij

(|Dtpi|2 + |D2pi|2 + |Dpi|2 + |pi|2)

 e2sαjdxdt

≤ C

∫
Qωj

|pj |2e2sαjdxdt+
∑
i∈Ij

∫
Qωi

|pi|2e2sαj


+ C

∑
i∈Ij

∫
Q
|Ni(t, x)|2e2sαjdxdt

≤ C

∫
Qωj

|pj |2e2sαjdxdt+
∑
i∈Ij

∫
Qωi

|pi|2e2sαi

 dxdt
+ C

∑
i∈Ij ,l∈Ii

∫
Q
θ|pl(t, x)|2e2sαldxdt,

where we have used Remark 3 in order to say that e2sαj ≤ θe2sαi ≤ θe2sαl

for θ > 0 to be fixed later and s > s(θ) big enough.

In the case Ij = ∅, we write the Carleman estimate for the homogeneous
equation

−Dtpj −∆pj − cj(t, x)pj = 0

So, there exist constants sj > 0 and C > 0 such that for s > sj

(6.24)

∫
Q

(|Dtpj |2 + |D2pj |2 + |Dpj |2 + |pj |2)e2sαjdxdt

≤ C
∫
Qωj

|pj |2e2sαjdxdt.

We add now estimates (6.23) and (6.24) and we obtain for some constant
C > 0 and s > maxj sj :

(6.25)

∑
j∈0,n

∫
Q

(|Dtpj |2 + |D2pj |2 + |Dpj |2 + |pj |2)e2sαjdxdt ≤

C

∑
j∈0,n

∫
Qωj

|pj |2e2sαjdxdt+
∑
j∈1,n

∫
Q
θ|pj(t, x)|2e2sαj

 dxdt.
Choosing θ small enough we that the integrals on Q in the right side may
be absorbed in the left side of the inequality and obtain

(6.26)

∑
j∈0,n

∫
Q

(|Dtpj |2 + |D2pj |2 + |Dpj |2 + |pj |2)e2sαjdxdt

≤ C
∑
j∈0,n

∫
Qωj

|pj |2e2sαjdxdt.
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Observe now that for j ≥ 0, by (6.2) there exists m = m(j) and the sequence
j0 = j, j1 = k(j0), . . . , jm = (k◦)m(j) = 0. Now, by (6.4), (6.5), (6.6),
(6.7), by looking only in the subdomains ωjl , l ∈ 0,m we find a sequence of

equations for l ∈ 0,m− 1, forming cascade like system:
(6.27)
−Dtpjl+1

−∆pjl+1
− cjl+1

(t, x)pjl+1
= ajl,jl+1

(t, x)pjl , in (0, T )× ωjl+1
.

Now, as ωjl ⊂⊂ ωjl+1
we find, as in the §3

(6.28)

∫
Qωjl

|pjl |
2e2sαjldxdt ≤ C

∫
Qωjl+1

|pjl+1
|2e2sαjl+1dxdt.

Consequently, for all j ∈ 1, n we find, by coupling the chain estimates above,
that

(6.29)

∫
Qωj

|pj |2e2sαjdxdt ≤ C
∫
Qω0

|p0|2e2sα0dxdt,

which plugged into (6.26) gives a final Carleman estimate

(6.30)

∑
j∈0,n

∫
Q

(|Dtpj |2 + |D2pj |2 + |Dpj |2 + |pj |2)e2sαjdxdt

≤ C
∫
Qω0

|p0|2e2sα0dxdt.

which gives the final conclusion in the L2 − L2 framework, (6.20).
The L∞−L2 estimate (6.21) follows by the same lines in the corresponding

Theorem 1, using the bootstrap argument in connection to the regularity
properties of the parabolic flow.

The main result concerning controllability with one control for linear par-
abolic systems with tree-like couplings is the following:

Theorem 5. Consider system (6.1) with coefficients in ẼM,δ,{ωi}i. Then

there exists a constant C = C(M, δ, {ωi}i) such that for all z0 ∈ H there
exists u∗ ∈ L2(0, T ;L2(ω0)) ∩ L∞(Qω0) which drives the corresponding so-
lution to (6.1) in 0, i.e. z = zu

∗
satisfies z(T ) = 0 and the control satisfies

the norm estimate

(6.31) ‖u∗e−sα‖L2(0,T ;L2(ω0)) + ‖u∗‖L∞(Qω0 ) ≤ C‖z0‖L2(Ω).

Proof. The proof is identical to the proof of Theorem 2 by using the Carle-
man estimates for the linear adjoint system (6.9) given by Theorem 4 and
a corresponding observability estimate as the one given by Remark 2.

Note here that for the L∞ estimate on the control, one needs to use in
Carleman estimate a parameter λ such that (3.16) holds.

Controllability of nonlinear semilinear parabolic systems with tree-like
couplings may be studied in analogy to the star-like case. For this, consider
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systems of the form
(6.32)

Dty0 −∆y0 = g0(x) + f0(x, y0) + χω0u, in (0, T )× Ω,
Dtyi −∆yi = gi(x) + fi(x, yk(i), yi), i ∈ 1, n, in (0, T )× Ω,
y0 = ... = yn = 0, on (0, T )× ∂Ω,
y(0, ·) = y0,

where gj ∈ L∞(Ω), j ∈ 0, n and y = (y0, ..., yn) ∈ [L∞(Ω)]n+1 is a corre-
sponding stationary solution. We assume the following hypotheses on the
nonlinearities:

(H1’) f0 ∈ C1(Ω×R), fi ∈ C1(Ω×R×R), i ∈ 1, n there exist ω1, ...ωn ⊂ Ω
open nonempty subsets of Ω satisfying (6.4),(6.5) and

(6.33) (ωi ∩ ωk(i)) \
⋃

j 6=i,k(j)=k(i)

ωj 6= ∅, ∀i ∈ 1, n,

and for all i ∈ 1, n we have

(6.34) fi(x, τ, ξ) = 0∀x ∈ Ω \ ωi, τ, ξ ∈ R;

(H2’) For a family of subdomains {ωi}i satisfying (6.6),(6.7), by defining
for i ∈ 1, n the coefficients

a0
ik(i)(x) :=

∂fi
∂yk(i)

(x, yk(i)(x), yi(x))

c0
0(x) :=

∂f0

∂y0
(x, y0(x)), c0

i (x) :=
∂fi
∂yi

(x, yk(i)(x), yi(x)),

we assume that for some M0, δ0 > 0 we have

(6.35) {a0
ik(i), c

0
j}i∈1,n,j∈0,n ∈ EM0,δ0,{ωi}i,k.

Theorem 6. Suppose y is a stationary state to uncontrolled (u = 0) (6.32)
and that functions fj , j ∈ 0, n satisfy hypotheses (H1’), (H2’). Then, for
all β0 > 0 there exist ζ0 = ζ0(β0) > 0 and C = C(β0, {ωi}i, y) such that if
‖yu(0)− y‖ < ζ0 there exists a control u ∈ L∞(Q) satisfying

‖u‖L∞(Q) ≤ C‖yu(0)− y‖L∞(Ω)

and
yu(T, ·) = y,

with
‖y(t, ·)− y‖L∞ ≤ β0, t ∈ [0, T ].

Remark 4. (1) Our results remain valid if instead of the operator ∆
we use general elliptic operators wehich may be differently chosen in
each of the equation of the system:

(6.36) Liyi := −
N∑

j,k=1

Dj(α
jk
i Dkyi) +

N∑
k=1

βki Dkyi + γiyi i = 1, n,

with general boundary conditions which may be also of Neumann or

Robin type. Here (αjki )j,k satisfy uniform ellipticity conditions in
Ω. In our study we need also to impose regularity assumptions on

the coefficients ( αjki ∈ W 1,∞(Ω), βki , γi ∈ L∞(Ω)); these regularity
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assumptions allow the development of the bootstrap argument based
on the regularizing properties of the parabolic flow when establishing
an L∞ framework for the controllability problem.

(2) The hypotheses on the support of the coupling coefficients is essen-
tial for our approach to the controllability problem. In fact, for the
systems we consider with the same type of couplings but with con-
stant coupling coefficients controllability no longer occurs. take for
example the following system with a star-type coupling (α and β are
fixed real constants):

(6.37)


Dtz0 −∆z0 = χω0u, in (0, T )× Ω,
Dtz1 −∆z1 = αz0, in (0, T )× Ω,
Dtz2 −∆z2 = βz0, in (0, T )× Ω,
z0 = z1 = z2 = 0, on (0, T )× ∂Ω.

Considering the results in [1],[2], null controllability occurs if and
only if the Kalman rank condition rank[A0|B] = 3. However, in this

situation the Kalman matrix is [A0|B] =

1 0 0
0 α 0
0 β 0

 and its rank

is 2.
Also, if we consider the parabolic system with tree-like couplings

(2.13) in §2 Preliminaries, with constant coefficients cj = 0, a10 =
a20 = a31 = a41 = 1, the Kalman matrix

[A0|B] =


1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0

 and this has rank 3; thus the system

is not null controllable.
In fact one may see the results in this paper more as an extension

of the results concerning cascade-like parabolic systems with noncon-
stant coefficients (see [10]).
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[12] Kévin Le Balc’h. Controllability of a 4 × 4 quadratic reaction-diffusion system. J.
Differential Equations, 266(6):3100–3188, 2019.

[13] Pierre Lissy and Enrique Zuazua. Internal observability for coupled systems of linear
partial differential equations. SIAM J. Control Optim., 57(2):832–853, 2019.

[14] Guillaume Olive. Null-controllability for some linear parabolic systems with controls
acting on different parts of the domain and its boundary. Math. Control Signals
Systems, 23(4):257–280, 2012.

[15] Ioan I. Vrabie. C0-semigroups and applications, volume 191 of North-Holland Math-
ematics Studies. North-Holland Publishing Co., Amsterdam, 2003.

(C.G. Lefter, E.A. Melnig) Octav Mayer Institute of Mathematics, Romanian
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