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ioana.ciotir@gmail.com

Abstract

In this paper we prove an existence and uniqueness result for the sto-
chastic porous media equation with very singular di¤usion and multiplica-
tive noise, by using monotonicity techniques. The multiplicative Gaussian
noise is essential in the proof of existence.
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1 Introduction

This work is concerned with stochastic non-linear equations corresponding to
di¤usion process of the type

dX (t) = div (X��1rX)dt (1)

where � 2 (�1; 0) ; and X (t; �) is the density for the time space coordinates
(t; �) :
This type of di¤usion has been observed during experiments using Wiscon-

sin toroidal octupole plasma containment device (see [14]). The same model
describes the expansion of a thermalized electron cloud (see [13]).
The phenomena is usually called very singular di¤usion and is relevant for the

case of small densities. In those circumstances we may consider a restriction
to non-negative data since the physical applications deal in general with the
situation X � 0: The physical understanding of fast and super-fast di¤usions is
assured by the knowledge of some remarkable properties which were studied in
[17].
The Cauchy problem for the equation (1) was studied in the deterministic

case in [15], by using an L1 approach. For asymptotic behaviour and stability
of the solution see [11] and [12].
The interest for the corresponding stochastic di¤erential equation follows

from the fact that most natural phenomena exhibit variability which cannot be
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modelled by using a deterministic approaches. More precisely, natural systems
can be represented as stochastic models, and the deterministic description is the
underlying motivating example.
The purpose of this paper is to study such equations in the framework of

stochastic evolution equations by using monotonicity methods. We can easily
see that

div (X��1rX) = 1

�
�X�

and keeping in mind that � is �xed and negative, we can reformulate corre-
sponding stochastic di¤erential equation as8<: dXt +�(Xt)

�
dt = XtdWt; in (0; T )�O;

(Xt)
�
= 0; on (0; T )� @O,

X0 = x; in O:
(2)

Here O is a bounded open subset of Rd with smooth boundary @O and
W (t) is a cylindrical Wiener process on a stochastic basis (
;F ;Ft;P) taking
values in a Hilbert space H; de�ned by W (t) =

1P
j=1

�jej�j (t) ; where �j 2 R,�
�j
	
j
are mutually independent Brownian motions over the same stochastic

basis and fejgj are the eigenfunctions of the Laplace operator � with Dirichlet
homogeneous boundary conditions on @O. The system is normalized in the
space L2 (O) and the corresponding eigenvalues are denoted by �j : We also
assume that

1P
j=1

�2j�
2
j <1:

We shall denote by H1
0 (O) ; H�1 (O) the standard Sobolev spaces on O and

by h:; :i1, h:; :i�1, j:j1 and j:j�1 the corresponding inner products and norms.
For p; q 2 [1;+1] by LqW ((0; T ) ;Lp (
; H)) (H a Hilbert space) we shall
denote the space of all q� integrable processes u : [0; T ] ! Lp (
; H) which
are adapted to the �ltration fFtgt�0 : By CW

�
[0; T ] ;L2 (
; H)

�
we denote the

space of all H� adapted processes which are mean square continuous.
We shall denote by C a positive constant independent of the approximations,

that may change in the chains of estimates.
Recently, the theory of non-linear stochastic equations was intensively stud-

ied for the drift of the form ��	(X) where 	 : R! R is a maximal monotone
operator.
In the case 	(x) = x� and � > 1; the corresponding equation describes

the dynamics of �uids in porous media (low di¤usions) and their existence,
uniqueness and positivity of the solution have already been studied in [6], [7],
[9], [18], [19] for the stochastic case. For the deterministic case see [1] and [20].
The case 	(x) = x� and � 2 [0; 1) is relevant in the mathematical modelling

of dynamics of an ideal gas in a porous media and, in particular, in plasma
fast di¤usion model for � = 0 (see [12]). The existence and uniqueness of a
strong solution was studied in [6], [7], [19] for more general non-linear stochastic
equations. Finite time extinction is studied in 3 dimensions for � 2

�
1
5 ; 1
�
in [8].
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The case 	(x) = log x was recently studied in [3]. Note that it corresponds in
the �rst formulation to the situations � = 0; since div (X�1rX) = � (lnX) :
For the case 	(x) = x� and � � �1; it has been proved that, even in the

deterministic case, there is no solution with �nite mass. For a detailed analyse
of the deterministic case see [20].
The present paper is concerned with the remaining case � 2 (�1; 0) and

we shall prove existence and uniqueness of the solution for equation (2) in the
following sense.

De�nition 1 Let x 2 H�1 (O) : An H�1 (O)�valued continuous Ft� adapted
process X is called solution to the super-fast di¤usion equation (2) on [0; T ] if

X 2 L2
�
0; T ; L2

�

; L2 (O)

��
; X� 2 L2

�
0; T ; L2

�

; H1

0 (O)
��

and

(X (t) ; ej)2 = (x; ej)2 +

Z t

0

Z
O
hr (X� (s)) ;reji d�ds

+
1X
k=1

Z t

0

(�kekX (s) ; ej)2 d�k (s) ;

for all eigenfunctions ej of the Laplace operator and 8 t 2 [0; T ], P� a:s: :

The same type of de�nition was used for the porous media case in [6].

2 The Main Result

We can now formulate the main result of this paper.

Theorem 2 For each x 2 L2 (O) non-negative a.e. on O, there is a unique
solution to the super-fast di¤usion equation (2) such that

X 2 L1
�
0; T ; L2

�

; L2 (O)

��
\ L2

�

; C

�
[0; T ] ; H�1 (O)

��
and

X� 2 L2
�
0; T ; L2

�

; H1

0 (O)
��
:

Proof. We can easily check that the operator

	 : R+ ! R�; 	(x) = �x�

is monotonically increasing and the range R(Id + 	) = R, which assures that
it is a maximal monotone operator in R � R. We denoted by Id the identity
function.
Consequently we can take the Yosida approximation for 	 in R, which is for

each � > 0; 	� : R! R�

	� (x) =
1

�

�
x� (Id+ �	)�1 x

�
= 	

�
(Id+ �	)

�1
x
�
; x 2 R
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and the corresponding resolvent J� : R! R+ = D (	)

J� (x) = (Id+ �	)
�1
x; x 2 R:

We de�ne the operator e	� : R! R by

e	� (x) = 	� (x) + �x
which is Lipschitz and increasing in R, and also strongly monotone, i.e.�e	� (x)� e	� (y)� (x� y) � � (x� y)2 ; 8x; y 2 R

and that implies that the inverse
�e	���1 is also Lipschitz in R.

We shall also need the potential of e	�, i.e. the l.s.c. proper convex function
ej� (x) = j� (x) + �x2

2
; 8x 2 R+

where
j(x) =

�1
�+ 1

x�+1; 8x 2 R+

is the potential of 	 and j� is the Moreau regularization of j (see Theorem 2.9
from [2] and [16]). It is well known that j� is di¤erentiable and j0� = 	� for
each �xed � > 0:
We can easily check that ej� veri�es for each � the conditions from Proposition

2.10 of [2] and consequently we get that ��e	� is a maximal monotone operator
in H�1 (O)�H�1 (O) with the potential '� : H�1 (O)! R de�ned by

'�(u) =

� R
O
ej� (u (x)) dx; u 2 L1 (O) and ej� (u) 2 L1 (O)

+1; otherwise.
(3)

Note that @'� = ��e	�.
We shall consider now the approximating equation8<: dX� (t)��e	� (X� (t)) dt = X� (t) dWt; in (0; T )�O;e	� (X�) = 0; on (0; T )� @O,

X� (0) = x; in O:
(4)

Since e	� is monotonically increasing and Lipschitz in R for each �; we
have by Theorem 2.12 in [5] that equation (4) has for each x 2 L2 (O) an
unique strong non-negative solution X� 2 L2

�
0; T ; L2

�

; L2 (O)

��
such thate	� (X�) 2 L2 �0; T ; L2 �
; H1

0 (O)
��
: Note that the strong solution is also a

solution in the sense of De�nition 1. We need also to mention that the conditione	� (0) = 0 can be avoided via a translation which is possible since the domain
D(e	�) = R and the range R�e	�� = R.

4



We intend to pass to the limit for �! 0 in

(X� (t) ; ej)2 = (x; ej)2 +

Z t

0

Z
O

D
re	� (X� (s)) ;rejE d�ds (5)

+
1X
k=1

Z t

0

(�kekX� (s) ; ej)2 d�k (s) ;

for all j 2 N, t 2 [0; T ] and P � a:s:: To this purpose we need some a priori
estimates.
We shall start by the estimate in the norm j : jL2(O) : Note that we can not

do it directly since the approximating solution does not belong to H1
0 (O) and

the formal calculation givesZ t

0

Z
O

D
re	� (X� (s)) ;rX� (s)E d�ds

=

Z t

0

Z
O

�
hr	� (X� (s)) ;rX� (s)i+ � jrX� (s)j2

�
d�ds

=

Z t

0

Z
O

�
	0 (J� (X� (s))) J

0
� (X� (s)) jrX� (s)j

2
+ � jrX� (s)j2

�
d�ds

=

Z t

0

Z
O

�
��

J1��� (X� (s))� ��
+ �

�
jrX� (s)j2 d�ds � 0;

(since � 2 (�1; 0) and J� : R! D(	) = R+).
In order to do this estimate properly we take a second approximation�

dX"
� (t) +A

"
� (X

"
� (t)) dt = X

"
� (t) dWt; for t � 0;

X"
� (0) = x;

(6)

where

A� (x) = ��(	� (x) + �x) = ��e	� (x)
D(A�) =

�
x 2 H�1 (O) \ L1 (O) ; 	� (x) + �x 2 H1

0 (O)
	
;

and A"� is the Yosida approximation of A�; i.e.

A"� (x) =
1

"

�
Id� (Id+ "A�)�1

�
(x) ; x 2 H�1 (O) :

We know by classical theory that equation (6) has a unique strong solution
and by Lemma 3.4 from [6] we have that, for each �

X"
� �! X�; strongly in L1

�
0; T ; L2

�

; H�1 (O)

��
; (7)

X"
� �! X�; in the weak? topology of L1

�
0; T ; L2

�

; L2 (O)

��
;

as "! 0:
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We can now apply the Itô formula to equation (6) for the function

'� (x) =
1

2

���(Id� ��)�1 x���2
2
; � � 0;

and, after taking the expectation and letting � ! 0; we obtain

E jX"
� (t)j

2
2 + E

Z t

0

Z
O
A"� (X

"
� (s))X

"
� (s) d�ds = jxj

2
2 + CE

Z t

0

Z
O
jX"

� (s)j
2
d�ds;

(8)

(for all the details concerning the approximation in � see Lemma 3.5 from [6]).
Let us denote by Y "� the solution to the equation

Y "� � "�e	� (Y "� ) = X"
�; e	� (Y "� ) 2 H1

0 (O) ; (9)

(in other words Y "� = (Id+ "A�)
�1
(X"

�)). Since e	� is strongly monotone we
have that Y "� is also in H

1
0 (O) : We can now take the inner product in L2 (O)

between (9) and Y "� and we get

jY "� j
2
2 + "

Z
O

D
re	� (Y "� ) ;rY "�E d� = Z

O
X"
�Y

"
� d�:

Since Z t

0

Z
O

D
re	� (Y "� ) ;rY "�E d�ds

=

Z t

0

Z
O

�
��

J1��� (X� (s))� ��
+ �

�
jrY "� (s)j

2
d�ds � 0;

we have that jY "� j
2
2 � jX"

�j
2
2 and then, the second term of the left-hand side of

(8) is also positive. Indeed,

E
Z t

0

Z
O
A"� (X

"
� (s))X

"
� (s) d�ds =

1

"
E
Z t

0

Z
O
(X"

� (s)� Y "� (s))X"
� (s) d�ds

� 1

2"
E
Z t

0

Z
O

�
jX"

� (s)j
2 � jY "� (s)j

2
�
d�ds � 0:

Then, by using Gronwall�s inequality in (8) we get that

E jX"
� (t)j

2
2 � C jxj

2
2 ;

for C a constant independent of " and �, and by (7) we obtain that

ess sup
t2[0;T ]

E jX� (t)j22 � C jxj
2
2 : (10)
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As a direct consequence, we see that, for each (t; !) 2 [0; T ]� 
; we haveZ
O
jX� (�)j�+1 d� �

�Z
O
jX� (�)j2 d�

��+1
2

jOj
1��
2

where jOj is the Lebesgue measure of the bounded set O. Then, by the Young
inequality (ab � 1

pa
p+ 1

q b
q with 1

p +
1
q = 1) for p =

2
�+1 and q =

2
1�� we obtain

that Z
O
jX� (�)j�+1 d� �

�+ 1

2

Z
O
jX� (�)j2 d� +

1� �
2

jOj ; (11)

and then

ess sup
t2[0;T ]

E
Z
O
jX� (�)j�+1 d� � C

�
jxj22 + 1

�
: (12)

For the second estimate we take the Itô formula to equation (4) with

'� (x) =

Z
O
ej� (x (�)) d�; 8x 2 L2 (O) ;

where ej� is the potential of e	�. Note that for x 2 L2 (O) non-negative a.e. on
O we have that x�+1 2 L1 (O) (and also ej� (x)) and the previous integral is
�nite for each �. It is clear that ej0� = e	�.
For a detailed justi�cation for the use of the Itô formula in this context

see Theorem 2.1 from [3] , Lemma 6 from [10] and keep also in mind that

hu; vi�1 =
D
(��)�1 u; v

E
2
and then

jA� (X�)j2�1 =
D
(��)�1

�
��e	� (X�)� ;���e	� (X�)�E

2
=
���re	� (X�)���2

2
:

For a di¤erent context see the second part of Proposition 3.2 from [4].
We obtain, after taking the expectation, that

E
Z
O
ej� (X� (t)) d� + EZ t

0

Z
O

D
re	� (X� (s)) ;rej0� (X� (s))E d�ds

= E
Z
O
ej� (x) d� + 1

2

1X
k=1

�2kE
Z t

0

Z
O
jX� (s) ekj2 ej00� (X� (s)) d�ds:

We recall that

ej0� (x) = e	� (x)ej00� (x) = e	0� (x) = ��
J1��� (x)� ��

+ �

7



and jekjL1(O) � c�k with
1P
k=1

�2k�
2
k <1: Now we have that

E
Z
O
ej� (X� (t)) d� + EZ t

0

Z
O

���re	� (X� (s))���2 d�ds (13)

� E
Z
O
ej� (x) d� + CEZ t

0

Z
O
X2
� (s)

�
��

J1��� (X�)� ��
+ �

�
d�ds:

For the �rst term of the left-hand side we have by Theorem 2.9 from [2] that

E
Z
O
ej� (X�) d� � E

Z
O

�
j (J� (X�)) + �

X2
�

2

�
d� (14)

� � 1

�+ 1
E
Z
O
(J� (X�))

�+1
d�:

The �rst term of the right hand side is

E
Z
O
ej� (x) d� � EZ

O

�
� 1

�+ 1
x�+1 + �

x2

2

�
d� � jxj22 : (15)

Going back to (13) and replacing (14) and (15) we obtain that

E
Z t

0

Z
O

���re	� (X�)���2 d�ds � 1

�+ 1
E
Z
O
(J� (X�))

�+1
d�

+ jxj22 + CE
Z t

0

Z
O
X1+�
�

(��)X1��
�

(J� (X�))
1�� � ��

d�ds+ �E
Z t

0

Z
O
jX�j2 d�ds:

Since J� is the resolvent of 	� we have

J� (X�)� � (J� (X�))� = X� (16)

and since J� (X�) and X� are non-negative a.e. on (0; T )� 
�O we get that

0 � X� � J� (X�) ; a.e. on (0; T )� 
�O: (17)

On the other hand, if we multiply (16) by J� (X�) and integrate over O we
obtain

jJ� (X�)j22 � �
Z
O
(J� (X�))

�+1
d� =

Z
O
X� J� (X�) d�:

By using another Young inequality (ab � a2 + 1
4b
2) in the last term of the

above equality we get that

3

4
jJ� (X�)j22 � jX�j

2
2 +

Z
O
(J� (X�))

�+1
d� (for � < 1).
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Then, arguing as in (11) we get

3

4
jJ� (X�)j22 � jX�j

2
2 +

�+ 1

2
jJ� (X�)j22 +

2

1� � jOj

and then
jJ� (X�)j22 �

4

1� 2�

�
jX�j22 + C

�
:

ConsequentlyZ
O
(J� (X�))

�+1
d� � �+ 1

2

Z
O
(J� (X�))

2
d� + C (18)

� C
�
jX�j22 + 1

�
:

On the other hand, by (17) we have that

0 � (��)X1��
�

(J� (X�))
1�� � ��

� (��) (J� (X�))
1��

(J� (X�))
1��

+ � (��)
� ��:

Now by using (18) and then (10) and (12) we get that

E
Z t

0

Z
O

���re	� (X�)���2 d�ds � C  ess sup
t2[0;T ]

E jX� (t)j22 + 1
!
� C: (19)

By (10) and (19) we have

X� ! X; weak� in L1
�
0; T ; L2

�

; L2 (O)

��
weakly in L2

�
0; T ; L2

�

; L2 (O)

��
�X� ! 0; strongly in L2

�
0; T ; L2

�

; L2 (O)

��
e	� (X�)! �; weakly in L2

�
0; T ; L2

�

; H1

0 (O)
��
:

Now, if we pass to the limit for �! 0 in (5), we get that

(X (t) ; ej)2 = (x; ej)2+

Z t

0

Z
O
hr�;reji d�ds+

1X
k=1

Z t

0

(�kekX (s) ; ej)2 d�k (s) ;

(20)
for all j 2 N, t 2 [0; T ] and P� a:s::
To conclude the proof of existence it is su¢ cient to show that

� (t; �; !) = 	 (X (t; �; !)) ; a:e: on (0; T )� 
�O.
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Since the realization of the operator	 is maximal monotone in L2 ((0; T )� 
�O)
(eventually via a translation), it is su¢ cient to check that

lim sup
�!0

E
Z t

0

Z
O
e	� (X�) X�d�ds � EZ t

0

Z
O
� Xd�ds: (21)

In order to prove this, we need �rst to check the strong convergence of fX�g�
in H�1 (O) : Indeed, by applying the Itô formula in H�1 (O) to X� � X� we
obtain via Burkholder-Davis-Gundy inequality for p = 1 that

E sup
t2[0;T ]

jX� (t)�X� (t)j2�1 � Cmax (�; �) ;

for details see [9]. That leads to

X� ! X strongly in L2
�

;C

�
[0; T ] ;H�1 (O)

��
:

Then we apply The Itô formula to (4) with the H�1 (O) norm and we obtain
that

lim sup
�!0

E
Z T

0

Z
O
e	� (X� (s)) X� (s) d�ds � �1

2
E jX (T )j2�1 +

1

2
E jxj2�1

+
1

2

1X
k=i

�kE
Z t

0

jX (s) ekj2�1 ds:

On the other hand if we apply the Itô formula to (20) we get that

E
Z T

0
H1
0 (O) h� (s) ; X (s)iH�1(O) ds � �1

2
E jX (T )j2�1 +

1

2
E jxj2�1

+
1

2

1X
k=i

�kE
Z t

0

jX (s) ekj2�1 ds:

Now (21) follows directly and then X is a solution in the sense of De�nition 1.
To prove uniqueness of the solution we assume by absurd that there are at

least two solutions X1 and X2; and we apply the Itô formula in H�1 (O) for
X1 �X2: We obtain

1

2
E jX1 (t)�X2 (t)j2�1 + E

Z t

0

Z
O
(	 (X1)�	(X2)) (X1 �X2) d�ds

=
1

2

1X
k=i

�kE
Z t

0

jX (s) ekj2�1 ds; t 2 [0; T ] :

Since 	 is monotonically increasing we obtain via Gronwall�s lemma that
X1 = X2 a.e. on (0; T )� 
�O and the proof is complete.
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