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Existence for the Neumann stochastic semilinear
equations via an optimal control approach

Toana Ciotir

ioana.ciotir@gmail.com

Abstract

In the present work we prove existence and uniqueness of the solution
for the stochastic nonlinear equation with Neumann boundary conditions,
under general monotonicity assumptions, motivated by physical applica-
tions. To this purpose we shall use an optimal control approach based on
the variational principle of Brezis and Ekeland.

Key word: stochastic PDE’s, monotone operators, optimal control, varia-
tional principle of Brezis and Ekeland

1 Introduction

This work is concerned with the semilinear stochastic equation with Neumann
boundary condition

dX () — AX (£)dt = QAW (1),  (0,T) x O,

(?9% +®(X) >0, (0,T) x 00 = X, (1)
X (0)=u, 0,

0
where O is a bounded open subset of R? with smooth boundary 00, n is the

outward normal derivative on the boundary of O, ® is a maximal monotone
graph (possibly multivalued). We assume that W (¢) is a cylindrical Wiener

process on a stochastic basis (Q,]-", {}—t}tzo ,IP’) taking values in the Hilbert
space L? (O), defined by W (t) = Y 3, (t)e;, for all t > 0, where {e;} is an
j=1

orthonormal basis in L? (0) and {4, };)11 is a sequence of mutually independent

Brownian motion on the probability space. We also assume that x € L? (O) .
The operator @ it considered to be linear, continuous, self-adjoint and pos-
itive on L? (0), with finite trace such that Ker@ = {0}.



Existence and uniqueness of the solution for this equation was studied so
far by standard existence theory only under very restrictive hypotheses, i.e.
® is assumed to be a maximal monotone operator defined everywhere on R,
monotonically increasing and satisfying

®(0)=0, forallreR,
|® ()| < Crlr|+ Ca, forallr € R, (2)
(®(r)—®(s)) (r—s)>Cs(r—s)*, forallrsecR,

for some constants C; > 0, i = 1, 3.
Indeed, considering the operator A : H' (0) — (H* ((’)))* defined by

(A(y),¥) = /O (Vy, V) da + /8 B (v (1)) 7o () dor,  for all § € H' (0),

o
where
Yo 1 H' (0) — HY? (20) (3)
is the trace function. (For a rigorous definition and details see e.g. [9] page
315.)
Consequently, we can rewrite equation (1) as

{ dX (t)+ AX (t)dt = /QdAW (t),
X(0)==z

and check that, under assumptions (2), the operator A satisfies hypotheses
from [18]. Another approach for existence of solution for the same equation was
recently published in [6].

In the present work we prove existence and uniqueness of the solution for
equation (1) under more general assumptions, motivated by physical applica-
tions. To this purpose we shall use an optimal control approach based on the
method formulated by Brezis and Ekeland in [10] and [11].

The same approach was used in [16] and [17] for deterministic equations with
time periodic coefficients.

Concerning stochastic differential equations, similar results were already
proved for the semilinear equation with Dirichlet boundary condition and for
the porous media equation in [2] and [3], but the case with Neumann boundary
conditions is still an open problem.

Physical motivation

An important model which is not covered by assumptions (2) is the temper-
ature control regulated by the temperature flux at the boundary. In this case
the operator ® is multivalued and the standard form is

g1, if z< hl,
[9170]7 if x:hly

P (:L’) = 0, if hy <z <hs,
[0,92] s if = hg,
g2 if hy <.



Here [g1,g2], with 0 € [g1,g2], is the closed interval confining the flux of

X
injected heat which can be measured by aa— and hy and hsy are the reference
n

temperature. For details see Example 3.6 from page 31 of [14]. A similar model
describes diffusion process through semi-permeable walls.

Another application of equation (1) arise in radiation models and more pre-
cisely in models involving Stefan-Boltzmann radiation law. In this case we need
an operator of the form

®(z) =az* +b.

See also the black body radiation model.

Preliminaries and notations

For the reader’s convenience, we shall recall some definitions and properties
concerning lower-semicontinuous convex functions.

Given such a function ¢ : V — R = [0, + 00}, where V is a Banach
space, we denote by dp : V — V' the subdifferential of ¢, that is defined by

dp(x)={z€V5 p@) <o) +(r—uz), VueV}, zeV,
and by ¢* : V/ — R its conjugate which is defined by
¢"(z) =sup{(z,2) —p(zx); z€Y}, 2V

The conjugate ¢* is also lower-semicontinuous and convex.
We recall also the duality relations

) +¢"(2) 2 (y,2), VyeVandVzel’,

vy +¢ () =(,2), iff zcdply), (4)
9" = (9p) .

We denoted by (.,.) the duality pairing between V' and V'. For details see e.g.

[8], [19] and [20].

We shall denote by LP(Q) the classical Lebesgue spaces with the usual norm
-]l and by H' (0), H'/? (80), W™ (O) the usual Sobolev spaces with the
corresponding duals (H* ((’)))* , H=1/2(00), WP (0), respectively.

If H is a Hilbert space, we denote by Cy ([0,T]; H) = Cw ([0,T]; L* (; H))

the space of all the continuous functions X : [0,7] — L?(Q; H) which are
adapted to the Wiener process W. This space is provided with the norm

X o= sup E|IX ().
1 X ey (0.1 1) (te[m | ()|H)

We can define similarly L}, ([0,7]; H). For details see [12] and [18].
We shall denote by C an independent constant that may change during the
computations.



Hypotheses and definition of the solution

We assume that
H;, The operator ® : R — 2¥, is a maximal monotone operator such that
D(®)=Rand R(®) =R.
Note that the assumption above holds for the operators presented in the
physical motivation.
H, The potential g of the operator ® verifies
g(—r) < Cig(r)+Cs, VreR,

where C7 > 0. With no loss of generality we may also consider that g > 0
and therefore we have also that ¢g* > 0.

Hj; The operator () from the noise is such that the stochastic convolution
Wqo € C([0,T] x O).

Here we considered
t
WQ(t):/ S(t— $)\/QdW (s), t>0,
0

and S (t — s) is the Cp—semigroup generated on L? (O) by the Laplace
operator with Neumann boundary condition.

For sufficient assumptions on () under which the condition above holds,
see Theorem 2.13, page 29 from [13].

Definition 1 A mild solution to equation (1) is a stochastic adapted process
X eCw ([U,T} ; (H! (0))*) which satisfies

t
X () :e*Aotx—/ eI B(Z)ds + Wq (t), P-a.s., t€[0,T],
0

where
Z € L' ([0,T] x 00 x Q)N L3y, ([O,T] . g2 ((‘3(’)))

is such that Z € ® (X) a.e. on [0,T] x 90 x Q,
Ay H' (0) — (H' (0))"

—Apt

is the Laplace operator with Neumann boundary condition, e is the Cy semi-

group generated by Ag on (Hl ((9))* and
B:H Y%(90) — (H! ((’)))*

is the adjoint of the trace operator vy introduced in (3).



2 The optimal control formulation

The first step is to rewrite the stochastic differential equation (1) as a random
differential equation.
To this purpose we consider first

dWq (t) — AWq (t) dt = /QdW (1), 0 x(0,T),

IWq

frng 5
ol =0, 80 x (0,T), (5)
Wq(0) =0, 0.

It is well known that the restriction to H? (O) of the Laplace operator Ag
generates a Co— semigroup on L2 (O), which shall be denoted by S (¢).

By classical existence theory we have that equation (5) has a unique solution
(the stochastic convolution) of the form

WQ(t):/O S(t—s)\/QdW (s), t>0,

such that Wg € C ([0,T] x O), P —a.s..
For each w € Q fixed, we can take the difference between (1) and (5) and get

d(X (t) =Wq (1) —AX(t) -Wq () dt =0,  (0,T)x 0,

X —
W‘F@(X)EO, (O,T)XGO:ZT,
(X = Wo)(0) =z, 0.

(6)
We denote Y = X — W and we can rewrite (6) in the equivalent form

Y
22 _AY =

5 A 0, (0,T) x O,

Y
87 + Z = 07 ZT;
on
Y (0) =z, 0,

where
g Y +WQ)+9" (Z2) =7 (Y +Wq)Z, a.e. onXr.

Indeed, according to (4), the relation above is verified only if

Z € ®(yy (Y +Wg)), ae. on (0,T) x 90 x Q.



We construct the following optimal problem
Minimize (P)

T
1(v.2) = / /ao{gwo(w%)wg*(mw(ﬂ%)@dadt

where

v (V) € LY (1), Z € L' ([0, T] x dO) N L2 ([O,T} . HU? (30))

are subject to

)4

— — AYdt = T

A 0. 0.1)x0,
Y

87 + Z = 07 ETv

on

Y (0) ==z, 0,

and to the state contrainte Y € L? ((0,T); H'(0)).

Following an idea similar to the Brezis Ekeland variational principle, we can
easily check that equation (6) has a solution if and only if the optimal problem
(P) has an optimal pair (Y*, Z*) and I (Y*, Z*)=0.

Since we shall use a L' — approach, the last term of I(Y, Z) might not be
well defined. For this reason we shall rewrite (P) in a more convenient form,

i.e.
(P’)

Minimize

T
rv.z) = / Ao{g<VO<Y+WQ>>+g*<Z>—mWQ)zwodt

T
1 1
[ [ revraga e 1y @ - 3l
0 (@]
where

vo (Y) € LY (87), Z € L ([0,T] x 00) N L? ([O,T] g2 (60))

are subject to

oY

— — AYdt =

5 dt =0, (0,T7) x O,
Y

87 +Z =0, >,

an

Y (0) ==, O,

and to the state contrainte Y € L? ((0,T); H'(0)).



3 The main result

We can now formulate the main result of this paper which holds under the
hypotheses presented in introduction.

Theorem 2 For each x € L?(O), there is a unique mild solution to equation
(1) in the sense of Definition 1, such that

X e Ly (0.11; 1'(0)

and
9 (v (Y +WQ)), ¢" (2) € L' (2 x [0,T] x d0),

where Z € ® (X) a.e. on [0,T] x 90 x Q.
In order to prove the result above, we need the following lemmas.

Lemma 3 The optimal control problem (P’) has at least a optimal pair.

Proof of Lemma 3. We know by classical theory that for

Z e L2 (o,T; H1/? (30))

equation
)4
— — AYdt = T
5 dt =0, (0,7) x O,
8l + 7 = O7 2T7 (7)
on
Y (0) =z, O,

has a unique solution Y € C ([O,T]; (H! ((9))*> NL?(0,T ;H' (0)), of the
form .
Y (t) = e Aoty — / e~ M= B (Z)ds (8)
0

where the operators Ay and B are as in Definition 1.

A similar method is presented in Example 2 from Section 4.3 of [8] for the
restriction of Ay to H? (0Q) which generates a Cop— semigroup on L? (0). For
the reader’s convenience, we shall sketch the main ideas, adapted to our case,
which needs Ay as the generator of a Cy— semigroup on (H . ((’)))*

Indeed, (8) follows by Proposition 4.39 from [8]. For assumption i) which
is necessary for the proposition mentioned before, we need to check that there
exist a function ¢ € L' (0,T) such that

le®* Bl Vi€ [0,7]. 9)

H-1/2(80), (Hl(O))*) < Qo(t)a



This follows from

t
1
| 1 o s < 5 ol (10)

where y(t) = e~4oz is the solution to

Jy

—= - Ay = T

at y 03 (07 ) X O’

Iy

— =0 by

on ) T,

y(()) = Yo, Oa

Relation (10) was obtained by using the chain differentiation rule (see e.g.
Lemma 4.1 from page 128 of [5]).
More precisely, we obtain (9) by using (10) as follows

Aot Aot
[Jete BHL(H—l/z(aO), (H(0))") = " Sl‘/lzp <1He ’ B(Z)H(Hl(o))*
H-1/200)=
< sup 1B ()l (10 # (t)
2l =172 50y <1
< Cop(t),

and because B : H~/2 (00) — (H* ((’)))* is linear and continuous as its adjoint
Yo-

In order to get existence of the optimal pair we need first to prove that the
cost functional

T
ry.z)= / /a A0 G (¥ + Wa)) 497 (2) = (Wg) Zpdadt (1)

T
2 1 2 1, 2
[ [ vy Paedes 51y @) - 5 ll3,
0o Jo
is bounded from below. For similar arguments applied to the porous media case,

see [2] and [7].
First we note that

T
/ / vo Wq) Zdodt
0o Joo

where § = sup ‘WQ‘LN(BO) < oo.
te[0,7]

T
ga// \Z| dodt (12)
0 o0

On the other hand, since D (®) = R we have that lim 9" (r) = o0, and

|7|—o00 "I"|

then, for each N > 1 there is Cy > 0 such that

9" (Z) > 2Nd6|Z| a.e.on {(t,§) € Tr; Z(t,€) > Cn}.



Then we have that

/OT/HOIZIdodt = // |Z| dodt + // Z|dodt  (13)

Z(t,)|>Cn 12(t.8)|<Cn

< — *(Z) dodt by
< 2N6/0 /809()0 +Cn |27,

where | Y| is the measure of Y.
Going back to (12) we obtain

T
/ / Yo Wo) Zdodt| < / / Z)dodt + 6Cn | Xr] .
0 00 8(9

Keeping in mind that ¢ > 0 and ¢* > 0 we obtain that (11) is bounded from
below.
Consequently, we can construct a minimizing sequence (Y;,, Zy,),, that verifies

T
inf I'(Y, 2) < / /a A0 G0 (Vi W) + 97 (Z2) = 70 (W) Zu} dadr. (14

n

T
1 1 1
[ [ v agat+ 31, @I - 5 Il < inf (v 2) 4
0 (@)

and is subject to (7).

We obtain that (Y;,),, is weakly compact in L? (0,7 H' (0)) and, via the
Dunford Pettis theorem, we have that (Z,,) is weakly compact in L' (7).
Indeed, we have that

/ /ao dcrdt<C’(1+||mH )

and by (13) we get that

T
// \andodtSC(Hllrclli)-
0 00

The equi-integrability of (Z,,),, follows by arguing as in Proposition 2.12 from
[4] or Theorem 2.2 from [2] and then we can apply the Dunford Pettis theorem.
This leads to

n

Y, — Y*, weakly in L? (0,T; H'(0)),
Yo (Yn) =7 (Y*),  weakly in L (S7), (15)
Ty — 2%, weakly in L' (S7).

Since g and g* are lower semicontinuous and convex in R, we have by [20]
that the corresponding convex integrals have the same properties in L! (X7)



and, consequently, they are lower semicontinuous also in the weak topology of
L' (7).

Now we can pass to the limit in (14) and get a solution to the optimal control
problem, i.e.

T
wt 1. 2) = [ [ {00 (0 4 Wo) + 7 (2) =0 (We) 2} dos

T
. 1 1
[ [ vyepagars 1y @ - 5 el
0 o

and this conclude the proof of Lemma 3. m

Lemma 4 The optimal solution (Y*,Z*) to problem (P’) is also solution to
the optimization problem (P ).

Proof of Lemma 4. From the formulation of problem (P’) we know that
(Y*, Z*) are such that

7%, 7y (V") € L' (Sr), Y*(T) € I*(0),

and
Y*eC(0,T]; L' (0))nL*(0,T; H" (0))

is a mild solution to equation (7) such that
9 (Y +Wq)), g (Z27) e L' (31).
First we shall check that

v (Y*)Z* € L' (3r). (16)

By using assumption H, we can easily see that
9(=7 (Y +Wq)) € L' (31),

and then, by the conjugacy formulae (4), we obtain that
=9 (=70 (Y +Wq))=g" (27) <o (YT + Wo) Z" < g (o (V" + Wo))+9" (£7)

and consequently, (16) follows directly.
Next we shall prove that

SV @)= e+ [ [ 19y Pagars [ [ a0 20dode= 0. 10
0 o 0 00

10



From the definition of the problem (P’) we know that Z* € L' (¥r) is such that
the solution of equation

aY™*
—AY* = T
P 0, (0,7)x0,
Nz —0,  w (18)
on
Y*(0) =z, O,

verifies Y* € C ([0,T]; L* (O)) N L?(0,T; H'(0)) and Y* (T) € L*(0).

Since
oY*

on
and Y* € L? (0,T; H'(0)) we have by Theorem 7.39, page 234 from [1] that

+Z*:OOHZT

ARD (o,T; H/? (80)) .

See also [15] for similar arguments.
We recall the trace operator

Yo : H' (0) — H'?(90),
and its adjoint
B:H'Y?00) — (H'(0))",
ie.,
(1 (0))* (B (u) 7U>H1(O) = m-12(00) (4, Yo (U)>H1/z(ao) .

Then equation (18) can be rewritten as
0

Y*

{ o7t A (Y +B(Z7) =0, (0.T) (19)
Y*(0) =2«

where Ay : H' (O) — (H' (O))" is the Laplace operator with Neumann ho-
mogeneous boundary conditions.

We apply to (19) the operator (1 +eAg) " : (H'(0))" — H'(0) and
denote

V= (1+4¢edo) ' Y* and B(Z%).=(1+¢cA) " B(Z").

It is well known that Y* — Y* and B (Z*)_ — B (Z*) as € — 0 in the spaces
where they belong (i.e. in H' (O) and (H' (0))” respectively).
On the other hand we can take the duality product between H* (O) and (H' (0)) *
of equation
oY

VX (0) = (1+e4o) " a.

€

11



with Y*, and, keeping in mind that (1)~ (. , .>H1(O) = (., .)y, we have that

1 1 B 2 T T
Sy (T)||§—7H(1+5A0) 13;H +/ /\VYE*|2d§dt+/ /B(Z*)EYE*dfdt:().
2 2 2 Jo Jo o Jo

Letting € — 0, we obtain that

T T
1 1
i [ [ B2, vedede =5 v @+ g leli- [ [ vy s
v Jo Jo 0o Jo
(20)
We also know that
Y — Y*, strongly in H' (O)

g

and

B(Z*).— B(Z*), strongly in (H' (O))*

g

in each ¢t € [0,T] as € — 0, and, by using the fact that (1 + eAO)fl is a contrac-
tion and B is linear and continuous, we get that

IN

[ < 1@

lmons 1Y o)

IN

12"l =1/200) 1Y "1 111 (0 -

Keeping in mind that Z* € L? (0,T7; H~Y/2(00)) andY* € L* (0,T; H' (0))
we can pass to the limit in (20) by using the Lebesgue dominated convergence
theorem for the integral with respect to ¢ and we obtain (17).

Finally, by replacing (17) in (P’) we can conclude the proof of Lemma 4. m

Proof of the main result.

In order to prove existence of the solution for equation (1) it is sufficient to
show that I (Y*,Z*) = 0. To this purpose we can use the duality theorem for
optimal control problem (see for instance Theorem 4.16 from [8]), i.e.

I'(Y*, Z*) + min (P*) = 0,
where (P*) is the dual optimization problem corresponding to (P) or equiva-

lently to (P’).
Recall that

T
1oz = ][ el W) 4" (27) = 2 (W) do at
[0 [ wyepags Sy @ - 31y O

denote /TL * * * *
ne (Y*, Z*)dt + (Y™ (T), Y*(0)).

0

12



We can compute the explicit form of the dual problem by using the following
constructions.
The functional of the dual problem is

I*(p.q) = / M (v (6) » ) dt + m(p(T), p(0)), (21)
where

M@y @)= sw {4y e 07 @) — L)},
(u,v)EHYx H—1/2

for p € H' (0) and ¢ € (H' (0))" and

m(p(T), p(0)) =1"(p(T), —p(0)),

and I*(p, q) is subject to

%—}—Ap—l—qzo, on (0,T7) x O,
op (22)
= 0, on (0,7) x 00,

such that
(Qa 70 (p)) € aL (Y*a Z*) )

(p(T), —p(0)) € OI(Y™ (T), Y™ (0)).

For details see e.g. Section 4.1.8 from [8], especially the proof of Theorem
4.5 and Theorem 4.16. Keep in mind that, in our case, the sign of the operator
B is changed with respect to the mentioned theory and that implies the other
sign modifications which can be seen above.

We shall first compute

M) = sw L (o) — Lo}

+ s {07 0)gie — I ()}
vEH—1/2(0)

denote ( jg)* (q) + (fg*)* (70 (p))

where

Q’\u
<
S~—
Il

/ p 70<u+WQ>>do+/ Vul? de
o0 (@]

i) = /80

(
(g" (v) = vyo (Wq)) do-

13



We can easily see that

(fg*)* (o () = e o) {H1/2 (0,7 (P) + 70 (WQ)) g1/ — /ao g (v)da}
— [ atul+Wopdn
00
and then .
M@0 @) = (1) @+ [ a6+ Wo)do (23)
On the other hand we have that
m(p(T), p(0)) = I(p(T), —p(0)) (24)
1 2 1 2
= o)+ Gmp ), - g+ 5 3
Lol O
(1) = ()" (=) for L% (0) =R, ()= bl
Going back to (21) and replacing (23) and (24) we obtain that
T JURNE
roa = [ ((B) @+ [ stobrwonds)a @)

1 , 1 )
+3 P13 = 5 Ip(Ol3

From (22) we can easily see that

S S 1pt02 = [ [ (190  pa) acet
9 2 92 2 0 o ’

and then, by replacing in (25), we get

I*(p,q)

/OT Opqdﬁdt
= / ' (1) @+ Iy 0) = (0:0) 20 ) dlt > 0.

Consequently

14

/OT (_fg)*(Q)dt+/(JT (/809(’)’0 (p+WQ))da+/OVP2d§> it



and then I’ (Y*, Z*) = 0 (equivalent with I (Y*, Z*) =0), i.e.

T
/ /ao {g(vo Y +WQ)) + 9" (Z7) =~y (Y + W) Z*} dodt = 0.
0
Finally, by (4) we get that

75 € B (v, (Y* +Wo)), ae. on (0,T) x 9O x Q.

Taking into account that X =Y 4+ Wy and also the relations (14) and (15)
we conclude the proof of existence.

Uniqueness of the solution follows directly from uniqueness of the solution
to equation (6) which is immediate from the monotonicity of ®. This concludes
the proof of the main result. =
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